1+3+5+7+...+997X999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{997\cdot999}\)
= \(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{997}-\dfrac{1}{999}\right)\)
= \(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{999}\right)\)
= \(\dfrac{1}{2}\cdot\dfrac{332}{999}=\dfrac{166}{999}\)
\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)
=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\)
=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\dfrac{3}{10}\)
=\(-\dfrac{40}{70}-\dfrac{21}{70}\)
=\(-\dfrac{61}{70}\)
(3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))
= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)
= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= - 8 + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)
= -7 + 3 + \(\dfrac{5}{6}\)
= - 4 + \(\dfrac{5}{6}\)
= \(\dfrac{-19}{6}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]
= -1/24 - [ 1/4 +3/8 ]
= -1/24 - 5/8
= -2/3.
a) -1/24 - [ 1/4 - ( 1/2 - 7/8 )]
= -1/24 - [ 1/4 +3/8 ]
= -1/24 - 5/8
= -2/3.
5: \(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=3-5-6+\dfrac{-1}{4}+\dfrac{7}{4}+\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{6}{5}-\dfrac{3}{2}\)
\(=-8+\dfrac{3}{2}+1+\dfrac{-3}{10}\)
\(=-7+\dfrac{15-3}{10}=-7+\dfrac{6}{5}=-\dfrac{29}{5}\)
6: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=6-5-3-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}+\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
7: \(=\dfrac{5}{3}-\dfrac{3}{7}+9-2-\dfrac{5}{7}+\dfrac{2}{3}+\dfrac{8}{7}-\dfrac{4}{3}-10\)
\(=9-2-10+\dfrac{5}{3}+\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{-3}{7}-\dfrac{5}{7}+\dfrac{8}{7}\)
=-3+1
=-2
8: \(=8-\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=8+6-3+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{9}{7}-1-\dfrac{2}{4}\)
\(=11+2-1-\dfrac{1}{2}\)
=11+1/2
=11,5
a) = 29/15
b) = 7/15
c) = 1
d) = 3
e) = 67/17
f) = 2
mk nhanh nhất tk cho mk nha
a/\(\frac{3}{5}+\frac{4}{3}=\frac{9}{15}+\frac{20}{15}=\frac{29}{15}\)
b/\(\frac{2}{3}-\frac{1}{5}=\frac{10}{15}-\frac{3}{15}=\frac{7}{15}\)
c/\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{7}{6}\)
d,\(\frac{3}{5}+\frac{4}{7}+\frac{7}{5}+\frac{3}{7}=\left(\frac{3}{5}+\frac{7}{5}\right)+\left(\frac{4}{7}+\frac{3}{7}\right)=2+1=3\)
\(\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{2}{4}\)
= \(\dfrac{24}{60}\) + \(\dfrac{40}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{64}{60}\) + \(\dfrac{30}{60}\)
= \(\dfrac{47}{30}\)
\(\dfrac{2}{6}+\dfrac{3}{12}\)
= \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\)
= \(\dfrac{7}{12}\)
\(\dfrac{5}{6}\) + \(\dfrac{1}{3}\)
= \(\dfrac{5}{6}\) + \(\dfrac{2}{6}\)
= \(\dfrac{7}{6}\)
\(\dfrac{1}{3}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{6}\)
= \(\dfrac{4}{12}\) + \(\dfrac{5}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{9}{12}\) + \(\dfrac{10}{12}\)
= \(\dfrac{19}{12}\)
\(\dfrac{5}{8}\) + \(\dfrac{4}{7}\)
= \(\dfrac{35}{56}\) + \(\dfrac{32}{56}\)
= \(\dfrac{67}{56}\)
\(\dfrac{7}{3}\) + \(\dfrac{8}{7}\)
= \(\dfrac{49}{21}\) + \(\dfrac{24}{21}\)
= \(\dfrac{73}{21}\)
\(\dfrac{1}{5}+\dfrac{5}{35}\)
= \(\dfrac{7}{35}\) + \(\dfrac{5}{35}\)
= \(\dfrac{12}{35}\)
Đặt A = 1 + 3 + 5 + ... + 995
Số số hạng của A:
(995 - 1) : 2 + 1 = 498 (số)
⇒ A = (995 + 1) × 498 : 2 = 248004
⇒ 1 + 3 + 5 + 7 + ... + 997 × 999
= 248004 + 997 × 999
= 248004 + 996003
= 1244007