K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Câu hỏi của Dương Văn Chiến - Toán lớp 8 - Học toán với OnlineMath

9 tháng 8 2023

a) Ta có: ���^=���^(��) mà hai góc đó là hai góc so le trong nên

suy ra ��//�� (1)

���^=���^(��) mà hai góc đó là hai góc so le trong nên suy ra ��//�� (2)

Từ (1) và (2) suy ra Ax và Ay cùng // BC.

Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng

bờ  AB không chứa điểm C

 Ax và Ay là hai tia đối nhau.

b) Vì Ax và Ay là hai tia đối nhau (cmt) mà ��//�� và ��//��

 nên suy ra ��//��

Mà ��⊥� nên suy ra 

18 tháng 1 2020

Gửi em!

Violympic toán 7

Vẽ tam giác đều BEC (A và E nằm trên cùng một nửa mặt phẳng bờ BC)

\(\widehat{A}=40^o\) nên \(\widehat{ABC}=70^o\)

Ta có \(\widehat{EBA}=\widehat{ABC}-60^o=70^o-60^o=10^o\)

\(\Delta EAB=\Delta CDB\left(c.g.c\right)\\ \Rightarrow\widehat{EAB}=\widehat{CDB}\\ \Delta EAB=\Delta EAC\left(c.c.c\right)\)

\(\widehat{BAC}=40^o\) nên \(\widehat{EAB}=\widehat{EAC}=20^o\)

Vậy \(\widehat{BDC}=\widehat{EAB}=20^o\)

17 tháng 1 2020

Vũ Minh TuấnbuithianhthoBăng Băng 2k6Akai HarumaNo choice teenNguyễn Thanh HằngNguyễn Thành TrươngArakawa WhiterBùi Thị Vân

NV
6 tháng 11 2021

Tính chất cơ bản của tam giác với 3 đường cao: \(\Delta AEF\sim\Delta ABC\) (bài toán quen thuộc chắc em tự c/m được)

\(\Rightarrow AF.AB=AE.AC\)

Trong tam giác vuông ABN với đường cao NF:

\(AN^2=AF.AB\)

Trong tam giác vuông ACM:

\(AM^2=AE.AC\)

\(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)

b. Hệ thức lượng: \(BN^2=BF.AB\) ; \(CM^2=CE.AC\)

\(\Delta ABD\sim\Delta CBF\) (2 tam giác vuông chung góc B)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BD}{BF}\Rightarrow BF.AB=BD.BC\) (1)

Hoàn toàn tương tư, \(\Delta ADC\sim\Delta BEC\Rightarrow CE.AC=CD.BC\) (2)

Cộng vế (1) và (2) \(\Rightarrow BF.AB+CE.AC=\left(BD+CD\right)BC=BC^2\)

\(\Rightarrow BN^2+CM^2=BC^2\)

\(\Rightarrow BN.CM\le\dfrac{1}{2}\left(BN^2+CM^2\right)=\dfrac{1}{2}BC^2=2a^2\)

Dấu "=" xảy ra khi tam giác cân tại A

NV
6 tháng 11 2021

undefined