Tính các cạnh và các góc chưa biết của tam giác MNP trong Hình 8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí cosin trong tam giác ABC, ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2AC.AB\cos A\)
Mà \(AB = 14,AC = 18,\widehat A = {62^o}\)
\(\begin{array}{l} \Rightarrow B{C^2} = {18^2} + {14^2} - 2.18.14\cos {62^o} \approx 283,3863\\ \Leftrightarrow BC \approx 16,834\end{array}\)
Lại có: Từ định lí cosin ta suy ra:
\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}};\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2.AC.BC}}\)
\( \Rightarrow \left\{ \begin{array}{l}\cos B = \frac{{{{14}^2} + 16,{{834}^2} - {{18}^2}}}{{2.14.16,834}} \approx 0,3297\\\cos C = \frac{{{{18}^2} + 16,{{834}^2} - {{14}^2}}}{{2.18.16,834}} \approx 0,6788\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}\widehat B \approx {70^o}45'\\\widehat C \approx {47^o}15'\end{array} \right.\)
Vậy \(BC \approx 16,834;\widehat B \approx {70^o}45';\widehat C \approx {47^o}15'.\)
Cách 1: Vì tam giác DEF có DF=FE(=4cm) nên tam giác DEF cân tại F.
Mà \(\widehat E=60^0\)
Do đó, \(\Delta DEF \) đều. (Tam giác cân có 1 góc bằng \(60^0\))
\(\Rightarrow \widehat D = \widehat F=\widehat E=60^0\).
Cách 2: Xét tam giác DEF có DF=FE(=4cm) nên tam giác DEF cân tại F.
Suy ra \(\widehat E = \widehat D = {60^o}\) ( tính chất tam giác cân)
Áp dụng định lí tổng ba góc trong tam giác vào tam giác DEF, ta có:
\(\begin{array}{l}\widehat D + \widehat E + \widehat F = {180^o}\\ \Rightarrow {60^o} + {60^o} + \widehat F = {180^o}\\ \Rightarrow \widehat F = {60^o}\end{array}\)
a) \(PQ = n.\cos a,PQ = m.\cos b\)
b) \(MQ = n.\sin a,PN = m.\sin b \Rightarrow MN = n.\sin a + m.\sin b\)
\(\begin{array}{l}{S_{MPQ}} = \frac{1}{2}m.\cos b.n.\sin a = \frac{1}{2}m.n.\cos b.\sin a\\{S_{NPQ}} = \frac{1}{2}n.\cos a.m.\sin b = \frac{1}{2}m.n.\cos a.\sin b\\{S_{MNP}} = \frac{1}{2}m.n.\sin \left( {a + b} \right)\end{array}\)
c) \({S_{MNP}} = {S_{MPQ}} + {S_{NPQ}} \Rightarrow \frac{1}{2}m.n.\cos b.\sin a + \frac{1}{2}m.n.\cos a.\sin b = \frac{1}{2}m.n.\sin \left( {a + b} \right)\)
\( \Rightarrow \sin \left( {a + b} \right) = \sin a.\cos b + \cos a.\sin b\)
d) \(\sin \left( {a - b} \right) = \sin \left[ {a + \left( { - b} \right)} \right] = \sin a.\cos \left( { - b} \right) + \cos a.\sin \left( { - b} \right) = \sin a.\cos b - \cos a.\sin b\)
b. Với ∠(MPQ) = 60o, ∠(NMP) = 60o thì tam giác MNP cân tại N và có 1 góc bẳng 60o nên tam giác ABC là tam giác đều ( 1 điểm)
Suy ra AB = BC = AC ( 1 điểm)
b. Với ∠(MPQ) = 60o, ∠(NMP) = 60o thì tam giác MNP cân tại N và có 1 góc bẳng 60o nên tam giác ABC là tam giác đều ( 1 điểm)
Suy ra AB = BC = AC ( 1 điểm)
ΔDEF đồng dạng với ΔMNP
=>\(\dfrac{DE}{MN}=\dfrac{EF}{NP}=\dfrac{DF}{MP}\)
=>\(\dfrac{MN}{DE}=\dfrac{NP}{EF}=\dfrac{MP}{DF}\)
=>\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}\)
Chu vi tam giác MNP bằng 38cm nên MN+NP+MP=38
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}=\dfrac{MN+NP+MP}{4+7+8}=\dfrac{38}{19}=2\)
=>\(MN=4\cdot2=8\left(cm\right);NP=7\cdot2=14\left(cm\right);MP=8\cdot2=16\left(cm\right)\)
M N P H
Không mất tính tổng quát g/s: MN<MP => NH=7 ; HP=12
Ta có:
\(NP=NH+HP=7+12=19\)
\(MP^2=HP.NP=12.19=228\Rightarrow MP=2\sqrt{57}\)
\(NM^2=NH.NP=7.19=133\Rightarrow NM=\sqrt{133}\)
Vậy
Ta có: \(NP = 22,\;\widehat P = {180^o} - ({112^o} + {34^o}) = {34^o}\)
Áp dụng định lí sin, ta có:
\(\frac{{MN}}{{\sin P}} = \frac{{MP}}{{\sin N}} = \frac{{NP}}{{\sin M}}\)
Suy ra:
\(MP = \frac{{NP.\sin N}}{{\sin M}} = \frac{{22.\sin {{112}^o}}}{{\sin {{34}^o}}} \approx 36,48\)
\(MN = \frac{{NP.\sin P}}{{\sin M}} = \frac{{22.\sin {{34}^o}}}{{\sin {{34}^o}}} = 22.\)