K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

vectơ \(\overrightarrow {OM} \) cùng hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {OM} } \right| = 4 = 4\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {OM}  = 4\,.\,\overrightarrow i \)

Tương tự, vectơ \(\overrightarrow {ON} \) ngược hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {ON} } \right| = \frac{3}{2} = \frac{3}{2}\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {ON}  =  - \frac{3}{2}\,.\,\overrightarrow i \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì P là hình chiếu vuông góc của M trên Ox nên điểm P biểu diễn hoành độ của điểm M là số \({x_o}\)

Ta có: vectơ \(\overrightarrow {OP} \) cùng phương, cùng hướng với \(\overrightarrow i \) và \(\left| {\overrightarrow {OP} } \right| = {x_o} = {x_o}.\left| {\overrightarrow i } \right|\)

\( \Rightarrow \overrightarrow {OP}  = {x_o}.\;\overrightarrow i \).

b) Vì Q là hình chiếu vuông góc của M trên Oy nên điểm Q biểu diễn tung độ của điểm M là số \({y_o}\)

Ta có: vectơ \(\overrightarrow {OQ} \) cùng phương, cùng hướng với \(\overrightarrow j \) và \(\left| {\overrightarrow {OQ} } \right| = {y_o} = {y_o}.\left| {\overrightarrow j } \right|\)

\( \Rightarrow \overrightarrow {OQ}  = {y_o}.\;\overrightarrow j \).

c) Ta có: \(\overrightarrow {OM}  = OM\).

Mà \(O{M^2} = O{P^2} + M{P^2} = O{P^2} + O{Q^2} = {x_o}^2 + {y_o}^2\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {{x_o}^2 + {y_o}^2} \)

d) Ta có: Tứ giác OPMQ là hình chữ nhật, cũng là hình bình hành  nên \(\overrightarrow {OM}  = \overrightarrow {OP}  + \overrightarrow {OQ} \)

\( \Rightarrow \overrightarrow {OM}  = {x_o}.\;\overrightarrow i  + {y_o}.\;\overrightarrow j \)

9 tháng 9 2017

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

Vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)có cùng giá nên chúng cùng phương.

Mà vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng nằm trên tia OM nên chúng cùng chiều

Vậy vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng hướng.

Ngoài ra, \(\left| {\overrightarrow {OM} } \right| = OM = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)

Ta kết luận \(\overrightarrow {OM}  = \sqrt 2 .\overrightarrow {OA} \).

12 tháng 1 2021

undefined

undefined

Lười đánh máy nên luyện chữ :))

15 tháng 7 2018

Đáp án C.

Ta có: 

8 tháng 9 2017

Đáp án C.

Ta có: 

Do đó P(-1;5)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: OA = 4,5 và OA’=4,5 nên OA=OA’.

10 tháng 5 2018

Đáp án C.

Ta có: N 2 ; − 3 ; 1 + i z = 1 + i 2 + 3 i = − 1 + 5 i  do đó  P − 1 ; 5 .

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(\overrightarrow {AB} .\overrightarrow {AC}  = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)

b)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)(do M là trung điểm của BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

+) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB}  = \frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} \)

c) Ta có:

 \(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ =  - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)

\( \Rightarrow AM \bot BD\)