K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

vectơ \(\overrightarrow {OM} \) cùng hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {OM} } \right| = 4 = 4\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {OM}  = 4\,.\,\overrightarrow i \)

Tương tự, vectơ \(\overrightarrow {ON} \) ngược hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {ON} } \right| = \frac{3}{2} = \frac{3}{2}\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {ON}  =  - \frac{3}{2}\,.\,\overrightarrow i \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì P là hình chiếu vuông góc của M trên Ox nên điểm P biểu diễn hoành độ của điểm M là số \({x_o}\)

Ta có: vectơ \(\overrightarrow {OP} \) cùng phương, cùng hướng với \(\overrightarrow i \) và \(\left| {\overrightarrow {OP} } \right| = {x_o} = {x_o}.\left| {\overrightarrow i } \right|\)

\( \Rightarrow \overrightarrow {OP}  = {x_o}.\;\overrightarrow i \).

b) Vì Q là hình chiếu vuông góc của M trên Oy nên điểm Q biểu diễn tung độ của điểm M là số \({y_o}\)

Ta có: vectơ \(\overrightarrow {OQ} \) cùng phương, cùng hướng với \(\overrightarrow j \) và \(\left| {\overrightarrow {OQ} } \right| = {y_o} = {y_o}.\left| {\overrightarrow j } \right|\)

\( \Rightarrow \overrightarrow {OQ}  = {y_o}.\;\overrightarrow j \).

c) Ta có: \(\overrightarrow {OM}  = OM\).

Mà \(O{M^2} = O{P^2} + M{P^2} = O{P^2} + O{Q^2} = {x_o}^2 + {y_o}^2\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {{x_o}^2 + {y_o}^2} \)

d) Ta có: Tứ giác OPMQ là hình chữ nhật, cũng là hình bình hành  nên \(\overrightarrow {OM}  = \overrightarrow {OP}  + \overrightarrow {OQ} \)

\( \Rightarrow \overrightarrow {OM}  = {x_o}.\;\overrightarrow i  + {y_o}.\;\overrightarrow j \)

24 tháng 9 2023

Tham khảo:

Dựng hình bình hành OAMB và OCND như hình dưới:

 

Khi đó: \(\overrightarrow {OM}  = \overrightarrow {OA}  + \overrightarrow {OB} \) và \(\overrightarrow {ON}  = \overrightarrow {OC}  + \overrightarrow {OD} \).

Dễ thấy:

\(\overrightarrow {OA}  = 3\;\overrightarrow i ;\;\,\overrightarrow {OB}  = 5\;\overrightarrow j \) và \(\overrightarrow {OC}  =  - 2\;\overrightarrow i ;\;\,\overrightarrow {OD}  = \frac{5}{2}\;\overrightarrow j \)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {OM}  = 3\;\overrightarrow i  + 5\;\overrightarrow j \\\overrightarrow {ON}  =  - 2\;\overrightarrow i  + \frac{5}{2}\;\overrightarrow j \end{array} \right.\)

b) Ta có: \(\overrightarrow {MN}  = \overrightarrow {ON}  - \;\overrightarrow {OM} \) (quy tắc hiệu)

\(\begin{array}{l} \Rightarrow \overrightarrow {MN}  = \left( { - 2\;\overrightarrow i  + \frac{5}{2}\;\overrightarrow j } \right) - \left( {\;3\;\overrightarrow i  + 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN}  = \left( { - 2\;\overrightarrow i  - 3\;\overrightarrow i } \right) + \left( {\frac{5}{2}\;\overrightarrow j  - 5\;\overrightarrow j } \right)\\ \Leftrightarrow \overrightarrow {MN}  =  - 5\;\overrightarrow i  - \frac{5}{2}\;\overrightarrow j \end{array}\)

Vậy \(\overrightarrow {MN}  =  - 5\;\overrightarrow i  - \frac{5}{2}\;\overrightarrow j \).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

Vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)có cùng giá nên chúng cùng phương.

Mà vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng nằm trên tia OM nên chúng cùng chiều

Vậy vecto \(\overrightarrow {OM} \) và \(\overrightarrow {OA} \)cùng hướng.

Ngoài ra, \(\left| {\overrightarrow {OM} } \right| = OM = \sqrt 2 \) và \(\left| {\overrightarrow {OA} } \right| = OA = 1\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt 2 .\left| {\overrightarrow {OA} } \right|\)

Ta kết luận \(\overrightarrow {OM}  = \sqrt 2 .\overrightarrow {OA} \).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì điểm M có tọa độ (x; y) nên vectơ \(\overrightarrow {OM} \) có tọa độ (x; y).

Và điểm N có tọa độ (x’; y’) nên vectơ \(\overrightarrow {ON} \) có tọa độ (x’; y’).

b) Ta có:  \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM} \) (quy tắc hiệu)

Mà \(\overrightarrow {OM} \) có tọa độ (x; y); \(\overrightarrow {ON} \) có tọa độ (x’; y’).

\( \Rightarrow \overrightarrow {MN}  = \left( {x';y'} \right) - \left( {x;y} \right) = \left( {x' - x;y' - y} \right)\)

c) Vì \(\overrightarrow {MN} \) có tọa độ \(\left( {x' - x;y' - y} \right)\) nên \(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {x' - x} \right)}^2} + {{\left( {y' - y} \right)}^2}} \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

b)  Ta có: Tọa độ các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) lần lượt là: -5; 5

Ta có \(\overrightarrow {AB}  =  - \overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng

30 tháng 3 2017

a)

b) Đáp số: = 3; = -5. Từ đây ta có = 3, = -5 và suy ra = - => là hai vectơ ngược hướng.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)      Ta có:

+) \(\overrightarrow {MB}  = \dfrac{1}{2}\overrightarrow {BC}  \Rightarrow \overrightarrow {MB} \) và \(\overrightarrow {BC} \) cùng hướng; tỉ số độ dài \(\dfrac{{BC}}{{MB}} = 2\)

\( \Rightarrow M\) nằm ngoài đoạn thẳng BC sao cho \(MB = \dfrac{1}{2}BC\)

+) \({\overrightarrow {AN}  = 3\overrightarrow {NB}  \Rightarrow \overrightarrow {AB}  + \overrightarrow {BN}  = 3\overrightarrow {NB}  \Rightarrow 4\overrightarrow {NB}  = \overrightarrow {AB}  \Leftrightarrow \overrightarrow {NB}  = \dfrac{1}{4}\overrightarrow {AB} }\)

\( \Rightarrow N\) thuộc đoạn thẳng AB và \(NB=\dfrac{{1}}{{4}} AB\)

+) \(\overrightarrow {CP}  = \overrightarrow {PA}  \Leftrightarrow \overrightarrow {PC}  + \overrightarrow {PA}  = \overrightarrow 0 \)

\( \Rightarrow P\) là trung điểm của CA

 

b) \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} \)

\(\begin{array}{l}\overrightarrow {MP}  = \overrightarrow {MC}  + \overrightarrow {CP}  = \overrightarrow {MC}  + \frac{1}{2}\overrightarrow {CA}  \\= \frac{3}{2}\overrightarrow {BC}  + \frac{1}{2}\left( {\overrightarrow {BA}  - \overrightarrow {BC} } \right)\\ = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \end{array}\)

c) Ta có:

\(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {BC}  + \frac{1}{4}\overrightarrow {BA} ;\) \(\overrightarrow {MP}  = \overrightarrow {BC}  + \frac{1}{2}\overrightarrow {BA} \)

\( \Rightarrow \overrightarrow {MP}  = 2\overrightarrow {MN} \)

Vậy \(M,N,P\) thẳng hàng

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

31 tháng 12 2019

1/Gọi \(\overline{M}=x\)

Có:\(2\overrightarrow{MA}+5\overrightarrow{MB}\)\(=2\left(-2-x\right)+5\left(5-x\right)\)\(=21-7x=0\)

\(\Leftrightarrow x=3\)

Vậy \(\overline{M}=3\)

Bài 2,3 ý tưởng tương tự.

#Walker