K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

Tập hợp S là: \(S = \{ \overrightarrow {AB} ;\;\overrightarrow {AC} ;\;\overrightarrow {AD} ;\;\overrightarrow {AO} ;\;\overrightarrow {BA} ;\;\overrightarrow {BC} ;\;\overrightarrow {BD} ;\;\overrightarrow {BO} ;\;\overrightarrow {CB} ;\;\overrightarrow {CA} ;\;\overrightarrow {CD} ;\;\overrightarrow {CO} ;\;\overrightarrow {DB} ;\;\overrightarrow {DC} ;\;\overrightarrow {DA} ;\;\overrightarrow {DO} ;\;\overrightarrow {OB} ;\;\overrightarrow {OC} ;\;\overrightarrow {OD} ;\;\overrightarrow {OA} \} \)

Các nhóm trong S là:

\(\begin{array}{l}\{ \overrightarrow {AB} ;\overrightarrow {DC} \} ,\{ \overrightarrow {BA} ;\overrightarrow {CD} \} ,\{ \overrightarrow {AD} ;\overrightarrow {BC} \} ,\{ \overrightarrow {DA} ;\overrightarrow {CB} \} ,\\\{ \overrightarrow {AO} ;\overrightarrow {OC} \} ,\{ \overrightarrow {OA} ;\overrightarrow {CO} \} ,\{ \overrightarrow {OB} ;\overrightarrow {DO} \} ,\{ \overrightarrow {BO} ;\overrightarrow {OD} \} .\end{array}\)

14 tháng 6 2019

Xét các số có 9 chữ số khác nhau

Có 9 cách chọn chữ số ở vị trí đầu tiện. Có  A 9 8  cách chọn 8 chữ số tiếp theo

Do đó có 9.  A 9 8  số có 9 chữ số khác nhau

Gọi A là biến cố: “ số được chọn có đúng bốn chữ số lẻ sao cho số 0 luôn đứng giữa hai chữ số lẻ”

Có C 5 4  cách chọn 4 chữ số lẻ. Đầu tiên la xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.

 

Tiếp theo ta có A 4 2  cách chọn và xếp hai chữ số lẻ đứng 2 bên chữ số 0.

Khi đó có 6! Cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.

29 tháng 6 2017

Câu 1 (3 điểm)

Viết tập hợp H bao gồm các số tự nhiên khác 0; nhỏ hơn 50 và chia hết cho 3.

\(H=\left\{3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48\right\}\)

Câu 2 (3 điểm)

Dùng các số tự nhiên 0; 2; 3; 4, hãy viết tất cả các số tự nhiên có 3 chữ số khác nhau:

  • 203
  • 204
  • 230
  • 234
  • 240
  • 243
  • 302
  • 304
  • 320
  • 324
  • 340
  • 342
  • 402
  • 403
  • 420
  • 423
  • 430
  • 432
29 tháng 6 2017

1. H = {3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48}

2. 234,243,203,204,230,240,302,304,402,403,320,324,423,432,420,430,340,342

25 tháng 2 2017

2:

a: {1;4}; {1;5}; {1;7}; {1;9}; {3;4}; {3;5}; {3;7}; {3;9}; {8;4}; {8;5}; {8;7}; {8;9}

b: Số tập hợp thỏa mãn là;

\(3\cdot4=12\)

25 tháng 8 2018

Chọn D

Không gian mẫu được mô tả là Ω : “Các số tự nhiên có 5 chữ số khác 0”.

Số phần tử của không gian mẫu là: 

Gọi biến cố A: “Các số tự nhiên có 5 chữ số khác 0 trong đó chỉ có mặt ba chữ số khác nhau”.

Số cách chọn 3 chữ số phân biệt a, b, c từ 9 chữ số tự nhiên khác 0 là C 9 3 . Chọn 2 chữ số còn lại từ 3 chữ số đó, có 2 trường hợp sau:

TH1: Nếu cả 2 chữ số còn lại cùng bằng 1 trong 3 số a, b, c thì có 3 cách chọn. Mỗi hoán vị từ 5! hoán vị của 5 chữ số chẳng hạn a, a, a , b, c tạo ra một số tự nhiên; nhưng cứ  hoán vị của các vị trí mà a, a, a chiếm chỗ thì chỉ tạo ra cùng 1 số tự nhiên. Do đó, trong TH1 có tất cả  3 . 5 ! 5 số tự nhiên.

TH2: 1 trong 2 chữ số còn lại bằng 1 trong 3 chữ số  và chữ số kia bằng một chữ số a, b, c khác trong 3 chữ số đó thì có 3 cách chọn. Mỗi hoán vị từ 5! hoán vị chẳng hạn a, a, b, b, c tạo ra một số tự nhiên nhưng cứ 2! cách hoán vị a và 2! cách hoàn vị b mà vẫn cho ra cùng 1 số. Do đó, trong TH2 có tất cả:  3 . 5 ! 2 ! . 2 !  số tự nhiên.

Suy ra số phần tử của biến cố A là:

Vậy xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là:  

12 tháng 5 2017

A B C D O
\(\overrightarrow{AO}=\overrightarrow{OC};\overrightarrow{DO}=\overrightarrow{OB}\);
\(\overrightarrow{OA}=\overrightarrow{CO};\overrightarrow{DO}=\overrightarrow{OB}\).

11 tháng 9 2023

11 tháng 9 2023

ABCD là hình vuông

\(\Rightarrow\Delta ABD\&\Delta ACD\) là tam vuông cân

\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|.\sqrt[]{2}\\\left|\overrightarrow{BD}\right|=\left|\overrightarrow{AB}\right|.\sqrt[]{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{AC}\right|=\dfrac{\sqrt[]{2}}{2}.\sqrt[]{2}=1\\\left|\overrightarrow{BD}\right|=\dfrac{\sqrt[]{2}}{2}.\sqrt[]{2}=1\end{matrix}\right.\)

\(\left|\overrightarrow{OA}\right|=\left|\overrightarrow{AO}\right|=\dfrac{1}{2}.\left|\overrightarrow{AC}\right|\)  (O là trung điểm AC)

\(\Rightarrow\left|\overrightarrow{OA}\right|=\left|\overrightarrow{AO}\right|=\dfrac{1}{2}.1=\dfrac{1}{2}\)