K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

24 tháng 9 2023

24 tháng 9 2023

Tham khảo:

Ta có: \( \overrightarrow {AB}  + \overrightarrow {AD}  =  \overrightarrow {AC} \) (do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

\( \Rightarrow \) Tứ giác ABMC là hình bình hành.

\( \Rightarrow  \overrightarrow {DC} =\overrightarrow {AB}  = \overrightarrow {CM} \). 

\( \Rightarrow C\) là trung điểm DM.

Vậy M thuộc DC sao cho C là trung điểm DM.

Chú ý khi giải

+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

+) ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng quy tắc ba điểm ta có:

\(\overrightarrow a  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \); \(\overrightarrow b  = \overrightarrow {DB}  + \overrightarrow {BC}  = \overrightarrow {DC} \)

Mà ABCD là hình thang nên AB//DC. Mặt khác vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {DC} \) đều có hướng từ trái sang phải, suy ra vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {DC} \)cùng hướng

Vậy hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:

Giá của vectơ \(\overrightarrow {AB} \) là đường thẳng AB

Giá của vectơ \(\overrightarrow {CD} \) là đường thẳng CD.

Dễ thấy: AB // CD do đó hai vectơ này cùng phương.

b) Quan sát hình 42, ta thấy cả hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng sang phải

Như vậy hai vectơ này cùng hướng.

c) Ta có: \(|\overrightarrow {AB} |\; = AB\); \(|\overrightarrow {CD} |\; = CD\) và AB = CD (cùng dài 5 ô vuông)

Vậy độ dài của hai vectơ là bằng nhau.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(AB = CD \Rightarrow \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {CD} } \right|\)

\(AB//CD\) và \(\overrightarrow {AB} \), \(\overrightarrow {DC} \) có hướng từ trái sang phải

Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng hướng

b) Ta có: \(AD = CB \Rightarrow \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right|\)

\(AD//CB\) và \(\overrightarrow {AD} \)có hướng từ trên xuống dưới, \(\overrightarrow {CB} \) có hướng từ dưới lên trên. Suy ra \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) ngược hướng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Hai vectơ \(\overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng: có giá song song và cùng hướng với nhau.

Hai vectơ \(\overrightarrow a \) và \(\overrightarrow x \) ngược hướng: có giá song song và ngược hướng với nhau.

Vectơ \(\overrightarrow z \) có giá song song với giá của vectơ \(\overrightarrow a \), ngược hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow z \) ngược hướng với nhau.

Vectơ \(\overrightarrow y \) có giá song song với giá của vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow y \) cùng hướng với nhau.

Vectơ \(\overrightarrow b \) có giá không song song với giá của vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương với nhuau. Do vậy không xét chúng cùng hướng hay ngược hướng với nhau.

18 tháng 5 2017

A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Giá của vectơ \(\overrightarrow {AB} \) là đường thẳng AB.

Các vectơ cùng phương với vectơ \(\overrightarrow {AB} \) là: \(\overrightarrow {CD} \) và \(\overrightarrow {DC} \)

a) vectơ \(\overrightarrow {DC} \) cùng hướng với vectơ \(\overrightarrow {AB} \).

b) vectơ \(\overrightarrow {CD} \) ngược hướng với vectơ \(\overrightarrow {AB} \).