tim x:
6(x+1)^2-2(x+1)^3-2(x-1)(x^2+x+1)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)
`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`
`<=> x^3 - 25x - x^3 - 8 = 5`
`<=> -25x - 8 = 5`
`<=> -25x = 13`
`<=> x = -13/25`
Vậy, `x = -13/25`
_____
\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)
`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`
`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`
`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`
`<=> 12x - 4 = -19`
`<=> 12x = -15`
`<=> x = -15/12 = -5/4`
Vậy, `x = -5/4.`
________
`@` Sử dụng các hđt:
`1)` `A^2 + B^2 = (A - B)(A + B)`
`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`
`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`
`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`5)` `(A - B)^2 = A^2 - 2AB + B^2.`
a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)
=>\(x\left(x^2-25\right)-x^3-8=5\)
=>\(x^3-25x-x^3-8=5\)
=>-25x=13
=>\(x=-\dfrac{13}{25}\)
b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)
=>\(6x^2+2-6x^2+12x-6=-19\)
=>12x-4=-19
=>12x=-15
=>x=-5/4
a) \(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\mid:2x-3=\frac{1}{4}\Rightarrow2x=\frac{13}{4}\Rightarrow x=\frac{13}{8}\left(TM\right)\\x< \frac{3}{2}\mid:3-2x=\frac{1}{4}\Rightarrow2x=\frac{11}{4}\Rightarrow x=\frac{11}{8}\left(TM\right)\end{cases}.}\)
b) \(\Leftrightarrow\left|x-1\right|=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}x\ge1\mid:x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\left(TM\right)\\x< 1\mid:1-x=\frac{3}{4}=>x=\frac{1}{4}\left(TM\right)\end{cases}}\)
c) \(\frac{3}{5\left(x-\frac{5}{6}\right)}-\frac{1}{2\left(\frac{3}{2}-1\right)}=-\frac{1}{4}\Leftrightarrow\frac{3}{\frac{5\left(6x-5\right)}{6}}-\frac{1}{2\cdot\frac{1}{2}}=-\frac{1}{4}\Leftrightarrow\frac{18}{5\left(6x-5\right)}=-\frac{1}{4}+1\)
\(\Leftrightarrow\frac{18}{5\left(6x-5\right)}=\frac{3}{4}\Leftrightarrow6x-5=\frac{24}{5}\Leftrightarrow6x=\frac{49}{5}\Leftrightarrow x=\frac{49}{30}\)
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\Leftrightarrow2\cdot\frac{x+1-2}{2\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow\frac{x-1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow2016x-2016=2015x+2015\Leftrightarrow x=2015+2016=4031\)
Vậy x = 4031.
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
\(\Rightarrow\frac{3}{2}x-\frac{1}{3}x=-\frac{1}{4}+\frac{2}{5}\)
\(\frac{7}{6}x=\frac{3}{20}\Rightarrow x=\frac{9}{70}\)
b) \(-5^{\frac{1}{2}x+1}=\frac{3}{4}-\frac{7}{6}\)
\(-5^{\frac{1}{2}x}.\left(-5\right)=-\frac{5}{12}\)
\(-5^{\frac{1}{2}x}=\frac{1}{12}\)
mà -51/2x mang giá trị âm
1/12 có giá trị dương
=> không tìm được x
c) \(\frac{2x-2}{3}=\frac{7x+3}{2-1}\)
\(\frac{2x-2}{3}=7x+3=\frac{21x+9}{3}\)
=> 2x - 2 = 21x + 9
=> 2x - 21x = 9 + 2
-19x = 11
x = -11/19
phần d bn lm như phần a nha
1 / 5 + x = 3 / 7 + 1 / 3
1 / 5 + x = 16 /21
x = 16 / 21 - 1 / 5
x = 59 / 105
x - 1 / 2 = 2 / 3 - 1 / 5
x - 1 / 2 = 7 / 15
x = 7 / 15 + 1 / 2
x = 29 / 30
3 / 5 * x = 2 / 7+ 1 / 4
3 / 5 * x = 15 / 28
x = 15 / 28 : 3 / 5
x = 25 / 28
7 / 8 : x = 1 / 6 * 2 / 3
7 / 8 : x = 1 / 9
x = 7 / 8 : 1 / 9
x = 63 / 8
\(6\left(x+1\right)^2-2\left(x+1\right)^3-2\left(x-1\right)\left(x^2+x+1\right)=1\)
\(\Leftrightarrow6\left(x^2+2x+1\right)-2\left(x^3+3x^2+3x+1\right)-2\left(x^3+x^2+x-x^2-x-1\right)=1\)
\(\Leftrightarrow6x^2+12x+6-2x^3-6x^2-6x-2-2x^3-2x^2-2x+2x^2+2x+2=1\)
\(\Leftrightarrow-4x^3+6x+5=0\)
\(\Leftrightarrow x=1.5233401602\)