Tìm số tự nhiên x
a) 5x = 625
b) 2x = 32
c) x50 = x
d) ( x-2) .(x-1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(18-\left(2x+5\right)=9\)
\(2x+5=18-9\)
\(2x+5=9\)
\(2x=9-5\)
\(2x=4\)
\(x=2\)
a) \(18-\left(2x+5\right)=9\)
\(\Rightarrow2x+5=18-9=9\)
\(\Rightarrow2x=9-5=4\Rightarrow x=4:2=2\)
b) \(23x-4=32\Rightarrow23x=32+4=36\Rightarrow x=\dfrac{36}{23}\)
c) \(\left(3x+2\right)^2=64\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
d) \(x\left(2x-12\right)=0\Rightarrow6x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, Ta có: 3 x = 3 2 nên x = 2
b, Ta có: 5 x = 5 3 nên x = 3
c, Ta có: 3 x + 1 = 3 2 nên x +1 = 2, do đó x = 1
d, Ta có: 6 x - 1 = 6 2 nên x - 1 = 2, đo đó x = 3
e) Ta có: 3 2 x + 1 = 3 3 nên 2x +1 = 3, do đó x = 1
f) Ta có: x 50 = x nên x 50 - x = 0 , do đó x x 49 - 1 = 0 = 0
Vì thế x = 0 hoặc x = 1
a: a^n=1
=>a^n=1^n
=>a=1
b: x^50=x
=>x^50-x=0
=>x(x^49-1)=0
=>x=0 hoặc x^49-1=0
=>x=0 hoặc x^49=1
=>x=0 hoặc x=1
a) Ta có: 6 x - 1 = 6 2 nên x -1 = 2, đo đó x = 3.
b) Ta có: 3 2 x + 1 = 3 3 nên 2x +1 = 3, do đó x = 1.
c) Ta có: x 50 = x nên x 50 - x = 0 , do đó x . x 49 - 1 = 0
Vì thế x = 0 hoặc x = 1.
a) \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)
a. \(\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=3\end{matrix}\right.\)
b. \(\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=3\end{matrix}\right.\)
Ta có: x50=x.x.x...x
Mà x50=x nên chỉ có hai giá trị của x thoả mãn là x = 0 và x = 1
a: =>3^x=3^4*3=3^5
=>x=5
b: =>\(2^{x+1}=2^5\)
=>x+1=5
=>x=4
c: \(\Leftrightarrow3^{x+2-3}=3\)
=>x-1=1
=>x=2
d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)
=>x=4 hoặc x=-4
e: (2x-1)^4=81
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=-1 hoặc x=2
f: (2x-6)^4=0
=>2x-6=0
=>x-3=0
=>x=3
a) \(3^x=81\cdot3\)
\(\Rightarrow3^x=3^4\cdot3\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
b) \(2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
c) \(3^{x+2}:27=3\)
\(\Rightarrow3^{x+2}:3^3=3\)
\(\Rightarrow3^{x+2-3}=3\)
\(\Rightarrow3^{x-1}=3\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
d) \(2x^2=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
e) \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f) \(\left(2x-6\right)^4=0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=6:2\)
\(\Rightarrow x=3\)
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
a) ( 2x - 25 ) : 3 = 27
( 2x - 25 ) = 81
2x = 81 + 25
2x = 106
x = 53
b) ( x - 3 ) ( 8 - x ) = 0
\(\Rightarrow\orbr{\begin{cases}x-3=0\\8-x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=3\\x=8\end{cases}}\)
d) 516 - ( 246 + 3x ) = 26
246 + 3x = 490
3x = 244
x =
a)(2x - 25) : 3 = 27
=> 2x - 25 = 27 . 3
=> 2x - 25 = 81
=> 2x = 81 + 25 = 106
=> x = 106 : 2 = 53
b)(x - 3).(8 - x) = 0
=> x - 3 = 0 hoặc 8 - x = 0
=> x = 3 hoặc x = 8
c) 889 - 5x - 2x = 375
=>889 - 7x = 375
=>7x = 889 - 375
=>7x = 514
=>x = 514/7
d) 516 - ( 246 + 3x ) = 26
=> 246 + 3x = 516 - 26
=> 246 + 3x = 490
=> 3x = 490 - 246
=> 3x = 244
=> x = 244/3
e) x + 1 + 2 + 3 + ... + 50 = 1500
=>x + (1 + 2 + 3 + ... + 50) = 1500
=>x + 50.(50+1):2 = 1500
=>x + 1275 = 1500
=>x = 1500 - 1275
=>x = 225
a) \(5^x=625\)\(=>x=4\)vì \(\left(\sqrt[4]{625}=5\right)\)
b) \(2^x=32\)\(=>x=5\)vì \(\left(\sqrt[5]{32}=2\right)\)
c) \(x^{50}=x\)\(=>x=1\)vì với 1 có số mũ rất lớn thì nó cũng = chính nó
d) \(\left(x-2\right).\left(x-1\right)=0\) \(=>\orbr{\begin{cases}\left(x-2\right)=0\\\left(x-1\right)=0\end{cases}}=>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
vậy \(x=2\)HOẶC \(x=1\)
\(a.5^x=625\)
\(\Leftrightarrow5^x=5^4\)
\(\Leftrightarrow x=4\)
\(b.2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
\(c.x^{50}=x\)
\(\Leftrightarrow x^{50}-x=0\)
\(\Leftrightarrow x\left(x^{49}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^{49}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{49}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(d.\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)