K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

A B C D M N P

a/

Ta có

BC//AD (cạnh đối hình bình hành) => BM//AD

\(\Rightarrow\dfrac{BM}{AD}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (1)

BC//AD => CM//AP

\(\Rightarrow\dfrac{CM}{AP}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{BM}{AD}=\dfrac{CM}{AP}\) Mà BM=CM (gt)

=> AP=AD (đpcm)

b/

Ta có

BC//AD => BC//DP \(\Rightarrow\dfrac{BN}{DN}=\dfrac{CN}{PN}\) (Hệ quả định lý Talet)

\(\Rightarrow\dfrac{BN}{CN}=\dfrac{DN}{PN}=\dfrac{BN+DN}{CN+PN}=\dfrac{BD}{CP}=1\)

\(\Rightarrow DN=PN\) => tg DPN cân tại N \(\Rightarrow\widehat{CPD}=\widehat{BDP}\) (góc ở đáy tg cân)

Xét tg BDP  và tg CDP có

\(\widehat{CPD}=\widehat{BDP}\) (cmt)

CP=BD (gt)

DP chung

=> tg BDP = tg CDP (c.g.c) => BP=CD

Xét tứ giác BCDP có

BC//DP

BP=CD

=> tứ giác BCDP là hình thang cân \(\Rightarrow\widehat{BPD}=\widehat{CDP}\) (góc ở đáy hình thang cân)

Xét tg ABP và tg ACD có

BP=CD (cmt)

\(\widehat{BPD}=\widehat{CDP}\) (cmt)

AP=AD (cmt)

=> tg ABP = tg ACD (c.g.c) => AB=AC (đpcm)

 

 

 

a: Xét tứ giác AHCG có 

AG//CH

AG=CH

Do đó: AHCG là hình bình hành

b: Xét ΔAEG và ΔCFH có 

AE=CF

\(\widehat{A}=\widehat{C}\)

AG=CH

Do đó: ΔAEG=ΔCFH

Suy ra: EG=FH

Xét ΔEBH và ΔFDG có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BH=DG

DO đó: ΔEBH=ΔFDG

Suy ra: EH=FG

Xét tứ giác EHFG có 

EH=FG

EG=HF

Do đó: EHFG là hình bình hành

c: ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(1)

Ta có: AECF là hình bình hành

nên hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(2)

Ta có: EHFG là hình bình hành

nên Hai đường chéo EF,HG cắt nhau tại trung điểm của mỗi đường(3)

Từ (1), (2) và (3) suy ra AC,BD,GH,EF đồng quy

11 tháng 3 2020

Cho hình bình hành ABCD. Lấy M tùy ý trên cạnh DC - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Tui không biết làm, nhưng tìm được cái đó, lấy cái đó tham khảo nha!

 

Bài 2: 

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân

Bài 2:

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân

17 tháng 10 2022

Gọi G là trung điểm của AD

Xét tứ giác AMCG có

AG//CM

AG=CM

Do đó: AMCG là hình bình hành

SUy ra: AG=CM và AM=CG; AM//CG

Xét ΔBSC có

M là trung điểm của BC

MN//SC
Do đó: N là trung điểm của SB

Xét ΔDAN có

G là trung điểm của DA

GS//AN

DO đó: S là trung điểm của DN

=>DS=SN=NB

Xét ΔAND và ΔMNB có

góc AND=góc MNB

góc NAD=góc NMB

Do đó: ΔAND đồng dạng với ΔMNB

=>AN/MN=ND/NB=2

=>AN=2NM

=>AN=2/3AM=2/3GC

Xét ΔPGC có AN//GC

nên AN/GC=PA/PG=2/3

=>PA=2/3PG

=>PA=2AG=AD