A = 2 + 22 + 23 + ... + 260
Xét xem A có ⋮ 3, A có ⋮ 7, A có ⋮ 5 không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+2^5+...+2^{59}\right)\)
A chia hết cho 3
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
____
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(A=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy A chia hết cho 7
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮5\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)
Vậy \(A⋮7\)
\(#WendyDang\)
a )không chia hết cho 2
b) chia hết cho 5
c) không chia hết cho 3
d ) không chia hết cho 9
Ta có A = 2 + 2 2 + 2 3 + . . . + 2 60
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 59 + 2 60
= 2.(1+2)+ 2 3 .(1+2)+...+ 2 59 .(1+2)
= 2.3+ 2 3 .3+...+ 2 59 .3
= 3.(2+ 2 3 +...+ 2 59 ) ⋮ 3
=> A ⋮ 3
Ta có A = 2 + 2 2 + 2 3 + . . . + 2 60
= 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + ... + 2 58 + 2 59 + 2 60
= 2.(1+2+4) + 2 4 .(1+2+4) + ... + 2 58 .(1+2+4)
= 2.7 + 2 4 .7 + ... + 2 58 .7
= 7.(2 + 2 4 + ... + 2 58 ) ⋮ 7
=> A ⋮ 7
Có A ⋮ 2; A ⋮ 3; A ⋮ 7 và 2;3;7 đôi một nguyên tố cùng nhau nên A ⋮ 42
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
Lời giải:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$.
A = 2+22+23+...+260
A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)
A = 2.7+24.7+...+258.7
A= 7. (2+24+...+258) chia hết cho 7
--> A chia hết cho 7 (ĐPCM)
A = 2 + 22 + 23 +...+ 260
A = (2 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 +2) + 23.(1 + 2) +...+ 259.(1 + 2)
A = (1 + 2). ( 2 + 23 +...+ 259)
A = 3.( 2 + 23 +...+ 259) ⋮ 3
A = 2 + 22 + 23 + ...+ 260
A = ( 2 + 22 + 23) + ...+ (258 + 259 + 260)
A = 2.( 1 + 2 + 22) + ...+ 258.( 1 + 2 + 22)
A = 2.7 +...+ 258. 7
A = 7.( 2 +...+ 258) ⋮ 7