Cho Hình 25 có EF = HG, EG = HF. Chứng minh rằng:
a) \(\Delta EFH=\Delta HGE\)
b) EF // HG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF và DH là phân giác của góc EDF
=>góc EDH=góc FDH
b: EH=FH=8/2=4cm
=>DH=3cm
c: Xét ΔDKH vuông tại K và ΔDGH vuông tại G có
DH chung
góc KDH=góc GDH
=>ΔDKH=ΔDGH
=>HK=HG
=>ΔHKG cân tại H
a) Ta có: \(\widehat{FIG}+\widehat{IFG}+\widehat{IGF}=180^0\)( tổng 3 góc trong △FIG)
\(\widehat{FEG}+\widehat{EFG}+\widehat{EGF}=180^0\)( tổng 3 góc trong △FEG)
Mà \(\widehat{IFG}< \widehat{EFG}\left(\widehat{IFG}+\stackrel\frown{EFI}=\widehat{EFG}\right)\)
\(\widehat{IGF}< \widehat{EGF}\left(\widehat{IGF}+\widehat{EGI}=\widehat{EGF}\right)\)
=>\(\widehat{FIG}>\widehat{FEG}\)
b) Ta có: EF + HE>FH (bất đẳng thức trong △EFG)
=>EF+EH+HG>FH+HG
=>EF+EG>FH+HG
a) Do EI là tia phân giác của \(\widehat{DEF}\Rightarrow\widehat{DEF}=\widehat{FEI}\)
Xét \(\Delta EID\) và \(\Delta EIF\) có:
ED = EF (theo giả thiết)
\(\widehat{DEI}=\widehat{FEI}\) (chứng minh trên)
EI chung
\(\Rightarrow\Delta EID=\Delta EIF\left(c.g.c\right)\)
b) Do \(\Delta EID=\Delta EIF\Rightarrow ID=IF\) (2 cạnh tương ứng)
\(\Rightarrow\Delta DIF\) cân tại I
Sửa đề: góc E=góc HFG
a: Xét ΔEFH và ΔFHG có
góc EFH=góc FHG
góc E=góc HFG
=>ΔEFH đồng dạng với ΔFHG
b: ΔEFH đồng dạng với ΔFHG
=>HF/HG=EF/HF
=>HF^2=HG*EF=9*16=144
=>FH=12cm
D E F M I H G = = - - x x
Vì M là trung điểm của EF => ME = MF
Xét △MDE và △MIF
Có : ME = MF (gt)
DME = FMI (2 góc đối đỉnh)
MD = MI (gt)
=> △MDE = △MIF (c.g.c)
=> DE = IF (2 cạnh tương ứng)
Và DEM = MFI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> DE // IF (dhnb)
b, Vì △MDE = △MIF (cmt)
=> DE = IF (2 cạnh tương ứng)
Xét △HDE vuông tại H và △HGE vuông tại H
Có: HD = HG (gt)
HE : cạnh chung
=> △HDE = △HGE (cgv)
=> DE = GE (2 cạnh tương ứng)
Mà DE = IF (cmt)
=> EG = IF (đpcm)
a) Xét \(\Delta EFH\) và \(\Delta HGE\) có :
EF = HG; FH = GE; EH chung
\(\Rightarrow \Delta EFH=\Delta HGE\) (c-c-c)
\( \Rightarrow \widehat {FEH} = \widehat {EHG}\)( 2 góc tương ứng )
b) Vì \(\widehat {FEH}=\widehat {EHG}\)
Mà 2 góc này ở vị trí so le trong
Do đó, EF // HG (Dấu hiệu nhận biết)