Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh
13+132+133+...+1399A=13+132+133+...+1399+\(\dfrac{1}{3^{100}}\) với 12
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\)
3A - A = 1 - \(\dfrac{1}{3^{100}}\)
2A = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\) < \(\dfrac{1}{2}\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{99}}\)
3A - A = 1 - \(\dfrac{1}{3^{100}}\)
2A = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\) < \(\dfrac{1}{2}\)