Trong các trường hợp sau, hãy kiểm tra đại lượng x có tỉ lệ thuận với đại lượng y hay không:
a)
x | 2 | 4 | 6 | -8 |
y | 1,2 | 2,4 | 3,6 | - 4,8 |
b)
x | 1 | 2 | 3 | 4 | 5 |
y | 3 | 6 | 9 | 12 | 25 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta thấy : \(\dfrac{2}{4} \ne \dfrac{4}{{16}} \ne \dfrac{6}{{36}} \ne \dfrac{8}{{64}} \ne \dfrac{{10}}{{100}}\)
Nên m và n không tỉ lệ thuận với nhau.
b)
Ta thấy \(\dfrac{1}{-5} = \dfrac{2}{{-10}} = \dfrac{3}{{-15}}= \dfrac{4}{{-20}} = \dfrac{{5}}{{-25}}\) ( = \( - \dfrac{1}{5}\)) nên m tỉ lệ thuận với n.
a) Đại lượng x tỉ lệ thuận với đại lượng f do f và x liên hệ với nhau theo công thức f = 5x .
\( \Rightarrow x = \dfrac{1}{5}y\)
\( \Rightarrow \) Hệ số tỉ lệ là : \(\dfrac{1}{5}\)
b) Theo đề bài ta có P tỉ lệ thuận với đại lượng m theo hệ số tỉ lệ g = 9,8 nên ta có công thức :
P = 9,8m ( hệ số k = g = 9,8 )
y tỉ lệ nghịch với z theo hệ số tỉ lệ h
=> \(y=\frac{h}{z}\)
z tỉ lệ thuận với x theo hệ số tỉ lệ k
=> z=kx
\(y=\frac{h}{z}\) = \(\frac{h}{kx}\) = \(\frac{h}{k}\times\frac{1}{x}\) =\(\frac{\frac{h}{k}}{x}\)
yx=\(\frac{h}{k}\)
vậy y tỉ lệ nghịch với x
a) Xét a.b ta có :
a.b = 1.60 = 2.30 = 3.20 = 4.15 = 5.12 vì cùng bằng 60
Vậy a tỉ lệ nghịch với b
b) Xét m.n ta có :
m.n = (-2).(-12) = (-1).(-24) = 1.24 = 2.12 ≠ 3.9
Ta thấy khi m = 3 và n = 9 thì hệ số tỉ lệ là khác với các giá trị còn lại nên m không tỉ lệ nghịch với n.
a) Ta có : \( \dfrac{2}{{1,2}} = \dfrac{4}{{2,4}} = \dfrac{6}{{3,6}} = \dfrac{{ - 8}}{{ - 4,8}}\) nên x tỉ lệ thuận với y
b)
Ta thấy : \(\dfrac{1}{3} = \dfrac{2}{6} = \dfrac{3}{9} = \dfrac{4}{{12}} \ne \dfrac{5}{{25}}\)nên x không tỉ lệ thuận với y