tìm x biết x/1.3+x/3.5+x/5.7+.........+x/97.99=49/99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân 2 vào 2 vế rồi bạn biến đổi ra( mình lười làm ắ)
tìm được x=50 ắ
\(\frac{x-2}{3}+\frac{x-2}{3.5}+\frac{x-2}{5.7}+...+\frac{x-2}{97.99}=\frac{-49}{99}\)
<=>\(\left(x-2\right)\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{49}{99}=-\frac{49}{99}\)
<=>x-2=-1
<=>x=1
=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99
=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99
=>1-1/(2x+1)=98/99
=>1/(2x+1)=1/99
=>2x+1=99
=>x=49
\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)
\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)
\(\Rightarrow x=\frac{198}{99}=2\)
Vậy x = 2
mình làm được bài tìm x
x.(2/1.3+2/3.5+2/5.7+...+2/97.99)-x=-100/99
x.(1-1/3+1/3-1/4+1/4-1/5+1/5+...+1/97-1/97-1/99)-x=-100/99
x.(1-1/99)-x=-100/99
x.98/99-x=-100/99
x.98/99=-100/99+x
x.x=-100/99-98/99
2x=-198/99
x=-198/99/2
x=-1
\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\times2=1\)
\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)
\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)
=> x = 1/2 * 2 = 1