Có bao nhiêu số thực x thoả mãn |x| = \(\sqrt 3 \)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
có 6 số nguyên thoả mãn là
( -2 , -1 , 0 , 1 , 2 , 3 )
k mình nha
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
Ta có \(\left(x+3\right)\left(x+5\right)\ge0\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+3\ge0\\x+5\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\ge-5\end{matrix}\right.\)\(\Leftrightarrow x\ge-3\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+3\le0\\x+5\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x\le-5\end{matrix}\right.\)\(\Leftrightarrow x\le-5\)
Vậy để thỏa mãn \(\left(x+3\right)\left(x+5\right)\ge0\) thì \(x\ge-3\) hoặc \(x\le-5\)
Suy ra có vô số số nguyên x
Đáp án B
tk
Ta có (x+3)(x+5)≥0(x+3)(x+5)≥0
Trường hợp 1: {x+3≥0x+5≥0{x+3≥0x+5≥0⇔{x≥−3x≥−5⇔{x≥−3x≥−5⇔x≥−3⇔x≥−3
Trường hợp 2: {x+3≤0x+5≤0{x+3≤0x+5≤0⇔{x≤−3x≤−5⇔{x≤−3x≤−5⇔x≤−5⇔x≤−5
Vậy để thỏa mãn (x+3)(x+5)≥0(x+3)(x+5)≥0 thì x≥−3x≥−3 hoặc x≤−5x≤−5
Suy ra có vô số số nguyên x
Đáp án B
Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:
x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)
Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\); \(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)
=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)
=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)
(x+2). (x+4) <0
TH1: (x+2) <0 và (x+4) >0
<=> x< -2 và x> -4
<=>x=3
TH2: (x+2) > 0 và (x+4)<0
<=> x> -2 và x< -4
Loại
=> Chỉ có 1 số thoả mãn là -3
Có hai số thực x thỏa mãn là: \(x = \sqrt 3 ;\,\,x = - \sqrt 3 \).