Cho a^m=a^n (a thuộc Q; m,n thuộc N) tìm các số m và n
cho a^m>a^n (a thuộc Q ; a>0;m,n thuộc N) so sánh m và n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^m=a^n\)
\(\Rightarrow m=n\)
Với \(a^m=a^n\) mọi \(m=n\)
Vậy: \(m=n\in\left\{1;2;3;4;...\right\}\)
Câu a
Nếu a=0 thì m và n là các số tự nhiên khác 0 tùy ý
a=1 thì m và n là các số tự nhiên tùy ý
a=-1 thì m và n là các số chẵn tùy ý hoặc các số lẻ tùy ý
a khác 0,a khác+_ 1 thì m=n
Câu b
Nếu a>1 thì m>n
Nếu 0<a<1 thì m<n
a, Để A là phân số thì \(4n+1\ne0\)
\(\Rightarrow4n\ne-1\)
\(\Rightarrow n\ne\dfrac{-1}{4}\)
a/ Để A ∈ Z
⇒ \(3x^2-9x+2\) ⋮ \(x-3\)
⇒ \(3x\left(x-3\right)+2\) ⋮ \(x-3\)
Vì \(3x\left(x-3\right)\) ⋮ \(x-3\)
⇒ \(2\) ⋮ \(x-3\)
⇒ \(x-3\inƯ_{\left(2\right)}\)
⇒ \(x-3\in\left\{1;2;-1;-2\right\}\)
⇒ \(x\in\left\{4;5;2;1\right\}\)
Vậy ...
b.
Ta có:
\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để A thuộc Z
=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)
=> \(21⋮\left(n-4\right)\)
\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)
\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)
không thể, vì để có phân số mới bằng phân số a/b thì m=n và n khác 0