K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

tu ve hinh : 

xet tamgiac AMN can tai A (gt) => goc AMN = goc ANM va AM = AN (dn)

AH vuong goc voi MN => goc AHN = goc AHM = 90o (dn)  

=> tamgiac AMH = tamgiac ANH (ch - gn)

=> goc NAH = goc MAH (dn) ma AH nam giua AN va AM 

=> AH la phan giac cua goc MAN

25 tháng 5 2022

a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0;\widehat{AQP}=\widehat{BQM}\).

\(\Rightarrow\)△APQ∼△BMQ (g-g)

\(\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\)

△ABQ và △PMQ có: \(\dfrac{QP}{QA}=\dfrac{QM}{QB};\widehat{AQB}=\widehat{PQM}\)

\(\Rightarrow\)△ABQ∼△PMQ (c-g-c).

 

25 tháng 5 2022

b) △ABQ∼△PMQ \(\Rightarrow\dfrac{PM}{AB}=\dfrac{PQ}{AQ};\widehat{BAQ}=\widehat{MPQ}\Rightarrow MP=\dfrac{PQ}{AQ}.AB\)

△APQ và △BPA có: \(\widehat{QAP}=\widehat{ABP}=45^0;\widehat{APB}\) là góc chung.

\(\Rightarrow\)△APQ∼△BPA (g-g)

\(\Rightarrow\widehat{AQP}=\widehat{BAP}\)

\(\widehat{APM}=\widehat{APQ}+\widehat{MPQ}=180^0-45^0-\widehat{AQP}+\widehat{BAQ}=180^0-45^0-\left(\widehat{BAP}-\widehat{BAQ}\right)=180^0-45^0-45^0=90^0\)

\(\Rightarrow\)MP⊥AN tại P.

△MPN và △AHN có: \(\widehat{MPN}=\widehat{AHN}=90^0;\widehat{ANM}\) là góc chung.

\(\Rightarrow\)△MPN∼△AHN (g-g)

\(\Rightarrow\dfrac{AH}{MP}=\dfrac{AN}{MN};\dfrac{NP}{NH}=\dfrac{NM}{NA}\Rightarrow\dfrac{NP}{NM}=\dfrac{NH}{NA}\)

△APQ và △AMN có: \(\dfrac{NP}{NM}=\dfrac{NH}{NA};\widehat{MAN}\) là góc chung.

\(\Rightarrow\)△APQ∼△AMN (c-g-c)

\(\Rightarrow\dfrac{AQ}{AN}=\dfrac{PQ}{MN}\Rightarrow\dfrac{MN}{AN}=\dfrac{PQ}{AQ}\)

\(\dfrac{AH}{MP}=\dfrac{AN}{MN}\Rightarrow AH=MP.\dfrac{AN}{MN}=\dfrac{PQ}{AQ}.AB.\dfrac{AN}{AM}=AB\) không đổi.

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc A chung

=>ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

b: Xét ΔAIE và ΔABC có

AI/AB=AE/AC
góc A chung

=>ΔAIE đồg dạng với ΔABC

30 tháng 4 2022

loading...

a) Xét \(\Delta ABE\) và \(\Delta HBE\):

BE chung

\(\widehat{ABE}=\widehat{EBH}\)

\(\widehat{EAB}=\widehat{EHB}=90^o\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)

\(\widehat{ACB}=90^o-\widehat{B}=30^o\)

\(\Rightarrow\Delta EBC\) cân tại E

Mà EH vuông góc BC

\(\Rightarrow HB=HC\)

c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)

\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)

\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)

\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)

\(\Rightarrow\Delta EHK\)  đều

d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)

\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)

\(\Rightarrow IE>EH\)

1 tháng 5 2022

a) Xét ΔABEΔABE và ΔHBEΔHBE:

BE chung

ˆABE=ˆEBHABE^=EBH^

ˆEAB=ˆEHB=90oEAB^=EHB^=90o

⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)

b) ˆEBH=12ˆB=30oEBH^=12B^=30o

ˆACB=90o−ˆB=30oACB^=90o−B^=30o

⇒ΔEBC⇒ΔEBC cân tại E

Mà EH vuông góc BC

⇒HB=HC⇒HB=HC

c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o

KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o

ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o

⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o

⇒ΔEHK⇒ΔEHK  đều

d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH

ΔIAEΔIAE vuông ở A ⇒IE>AE