Tính
a) 2 023 - 252 : 53 + 27 b) 60: [ 7. ( 112 - 20. 6 ) + 5 ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(x-35\%\cdot x=\dfrac{1}{25}\)
\(\Leftrightarrow65\%\cdot x=\dfrac{1}{25}\)
\(\Leftrightarrow x=\dfrac{1}{25}:\dfrac{13}{20}=\dfrac{1}{25}\cdot\dfrac{20}{13}=\dfrac{4}{65}\)
Vậy: \(x=\dfrac{4}{65}\)
Bài 2:
a) Ta có: \(17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)\)
\(=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=11+\dfrac{2}{31}-\dfrac{15}{17}\)
\(=\dfrac{5366}{527}\)
a: =8/5-2/3=24/15-10/15=14/15
12/20-6/18=3/5-1/3=9/15-5/15=4/15
b: 18/21-12/27=6/7-7/9=54/63-49/63=5/63
8/12-20/50=2/3-2/5=10/15-6/15=4/15
\(a,\dfrac{8}{5}-\dfrac{18}{27}=\dfrac{8}{5}-\dfrac{2}{3}=\dfrac{14}{15}\\ \dfrac{12}{20}-\dfrac{6}{18}=\dfrac{3}{5}-\dfrac{1}{3}=\dfrac{4}{15}\\ b,\dfrac{18}{21}-\dfrac{12}{27}=\dfrac{6}{7}-\dfrac{4}{9}=\dfrac{26}{63}\\ \dfrac{8}{12}-\dfrac{20}{50}=\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{4}{15}\)
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
Ối giời! Bấm máy tính đi bn! Người ta sinh ra cái máy tính là để làm mấy việc này mà. :D
Thông Ngô lần sau đăng ít thôi bạn ơi, nhiều quá không ai làm đc đâu
\(A=5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9\)
\(A=5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9\)
\(A=5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}\)
\(A=5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}\)
\(A=2^{29}\cdot3^{18}\cdot\left(5\cdot2^1\cdot1-1\cdot3^2\right)\)
\(A=2^{29}\cdot3^{18}\cdot\left(5-9\right)\)
\(A=-2^2\cdot2^{29}\cdot3^{18}\)
\(A=-2^{31}\cdot3^{18}\)
_______________
\(B=5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6\)
\(B=5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6\)
\(B=5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}\)
\(B=2^{28}\cdot3^{18}\cdot\left(5\cdot1\cdot3-7\cdot2\cdot1\right)\)
\(B=2^{28}\cdot3^{18}\cdot\left(15-14\right)\)
\(B=2^{28}\cdot3^{18}\)
Ta có: \(A:B\)
\(=\left(-2^{31}\cdot3^{18}\right):\left(2^{28}\cdot3^{18}\right)\)
\(=\left(-2^{31}:2^{28}\right)\cdot\left(3^{18}:3^{18}\right)\)
\(=-2^3\cdot1\)
\(=-8\)
\(a, 2023 - 25^2 : 5^3 + 27\)
\(=\left(2023+27\right)-\left(5^2\right)^2:5^3\)
\(=2050-5^4:5^3\)
\(=2050-5\)
\(=2045\)
___
\(b,60:\left[7\cdot\left(11^2-20\cdot6\right)+5\right]\)
\(=60:\left[7\cdot\left(121-120\right)+5\right]\)
\(=60:\left(7\cdot1+5\right)\)
\(=60:\left(7+5\right)\)
\(=60:12\)
\(=5\)
#Toru
a) \(2023-25^2:5^3+27\)
\(=2023-5^4:5^3+27\)
\(=2023-5+27\)
\(=2018+27\)
\(=2045\)
b) \(60:\left[7.\left(11^2-20.6\right)+5\right]\)
\(=60:\left[7.\left(121-120\right)+5\right]\)
\(=60:\left[7.1+5\right]\)
\(=60:\left[7+5\right]\)
\(=60:12\)
\(=5\)
\(#WendyDang\)