a) Cho tam giác DEG có góc E là góc tù. So sánh DE và DG.
b) Cho tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí tổng ba góc trong một tam giác trong tam giác MNP, có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\ \Rightarrow 47^\circ + 53^\circ + \widehat P = 180^\circ \\ \Rightarrow \widehat P = 180^\circ - 47^\circ - 53^\circ = 80^\circ \\ \Rightarrow \widehat M < \widehat N < \widehat P(47^\circ < 53^\circ < 80^\circ )\end{array}\)
\( \Rightarrow \) NP < MP < MN ( cạnh đối diện với góc lớn hơn thì lớn hơn)
Vậy các cạnh của tam giác đó theo thứ tự độ dài từ bé đến lớn là NP, MP, MN.
Tam giác ABC và tam giác MNP bằng nhau (có ba cặp cạnh bằng nhau: AB = MN, BC = NP, AC = MP). Nên các cặp góc tương ứng trong hai tam giác này bằng nhau: \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).
Vậy \(\widehat A = \widehat M = 65^\circ \); \(\widehat B = \widehat N = 71^\circ \); \(\widehat C = \widehat P = 180^\circ - 65^\circ - 71^\circ = 44^\circ \)(vì tổng ba góc trong một tam giác bằng 180°).
a) Vì \(\widehat A = 105^\circ > 90^\circ \) nên là góc tù. Do đóc góc A là góc lớn nhất trong tam giác ABC
Cạnh BC đối diện với góc A nên là cạnh lớn nhất trong tam giác ABC
Vậy cạnh lớn nhất của tam giác ABC là cạnh BC.
b) Vì tam giác có góc A là góc tù
\( \Rightarrow \)Tam giác ABC là tam giác tù
a) Trong tam giác ABC: \(\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 42^\circ - 37^\circ = 101^\circ \).
b) Trong tam giác ABC: \(\widehat B < \widehat A < \widehat C\)nên \(AC < BC < AB\). (Vì AC đối diện với góc B; BC đối diện với góc A; AB đối diện với góc C).
a) Áp dụng định lí cosin, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)
c)
+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)
+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)
Ta có:
\(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow \widehat {AMB} + {80^o} = {180^o}\\ \Rightarrow \widehat {AMB} = {100^o}\end{array}\)
Áp dụng định lí tổng ba góc trong một tam giác:
+) Trong tam giác AMB có:
\(\begin{array}{l}\widehat {ABC} + \widehat {MAB} + \widehat {AMB} = {180^O}\\ \Rightarrow \widehat {ABC} + {20^o} + {100^o} = {180^O}\\ \Rightarrow \widehat {ABC} = {60^o}\end{array}\)
+) Trong tam giác ABC có:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = {180^o}\\ \Rightarrow \widehat {BAC} + {60^o} + {60^o} = {180^o}\\ \Rightarrow \widehat {BAC} = {60^o}\end{array}\)
\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).
Ta có: DE // AB nên \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180°
\(\Rightarrow \widehat {AED} = 180^\circ - \widehat {CED} = 180^\circ - 120^\circ = 60^\circ \)
Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.
Mà \(\widehat {DEA} = 60^\circ \)
Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).
a)
Xét tam giác NMD và tam giác NED, có:
NM=EH(gt)
\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)
ND là cạnh chung
Suy ra: Tam giác NMD=tam giác NED (c.g.c)
==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)
b) Có: +) MN vuông góc MP
+) EH vuông góc MP
==> MN // EH
c) Có : MN // EH
==> MNP = HEP (2 góc đồng vị)
a)
Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.
Vậy DE < DG.
b)
Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ - 56^\circ - 65^\circ = 59^\circ \).
Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).