Để đa thức 2x^2+3x+a là bình phương của một đa thức thì hệ số a là ????????????¿¿¿¿¿¿¿¿¿¿¿
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)
2x^2+3x+a=2x^2+3x+1,125+a-1,125
=(x√2+3/2√2)^2+a-1,125
Vậy để đa thức 2x^2+3x+a là bình phương của đa thức thì a-1,125=0
=>a=1,125
A=a^3+b^3+c^3+3(a+b)(b+c)(c+a)+a^3- b^3-c^3-3a(b+c)(a-b-c)+3bc(b+c)-6a(b^2+2...
nhân ra rồi triệt thì ra kết quả là A=8
Xin lỗi không để giải chi tiết đước .Dài quá, đánh mỏi hết cả tay