tìm x,y thuộc Z
a)x.(5-2x)+2x.(x-1)=15
b)3x+4y-xy=15
bn nào trả lời chi tiết và đúng minktick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 + 3x - 13 chia hết cho x + 3
<=> x(x + 3) - 13 chia hết cho x + 3
Mà x(x + 3) chia hết cho x + 3
=> 13 chia hết cho x + 3
=> x + 3 thuộc Ư(13) = {-13;-1;1;13}
Ta có bảng :
x + 3 | -13 | -1 | 1 | 13 |
x | -16 | -4 | -2 | 10 |
\(\left(2x+1\right)\left(x^2-x\right)+x\left(5+x-2x^2\right)=3x+7\)
\(2x^3-2x^2+x^2-x+5x+x^2-2x^3=3x+7\)
\(5x-x=3x+7\)
\(4x-3x=7\)
\(x=7\)
(2x+1)(x^2-x)+x(-2x^2+x+5)=3x+7
=>2x^3-2x^2+x^2-x-2x^3+x^2+5x=3x+7
=>-x^2-x+x^2+5x=3x+7
=>4x=3x+7
=>x=7
Lời giải:
a.
$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$
$=9x=9.15=135$
b.
$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$
$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$
c.
$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$
$=-8x^3+9x^2y^2-xy^3$
$=(-2x)^3+(3xy)^2-xy^3$
$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a)x.(5-2x)+ 2x.(x-1)= 15 5x - 2x² + 2x² - 2x = 15 3x = 15 3x = 15 x = 5
b)3x+4y-xy=15
Nếu x,y thuộc Z
suy ra phương trình tương đương với y(4-x)-3(4-x)=15-12
suy ra (4-x)(y-3)=3
Xét các trường hợp
4-x=1 thì y-3=3
4-x=-1 thì y-3= -3
4-x =3 thì y-3=1
4-x= -3 thì y-3= -1
a ) X= 5
b ) X(3-Y) =3+12-4Y
X(3-Y) - 4(3-Y) = 3
(X-4 ).(3-Y) =3
TH1 : x-4 =3 VÀ 3-Y =1 TH2 X-4 = 1 VÀ 3-Y= 3 THẾ LÀ OK