Tìm số nguyên n để phân số sau là phân số nguyên \(A=\frac{3n-9}{n-2}\) \(A=\frac{4n+1}{n-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : xy - x - y = 2
=> xy - x = 2 + y
=> x(y - 1) = y + 2
=> x = \(\frac{y+2}{y-1}\)
Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên
Suy ra : y + 2 chia hết cho y - 1
=> y - 1 + 3 chia hết cho y - 1
=> 3 chia hết cho y - 1
=> y - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
y - 1 | -3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
x = \(\frac{y+2}{y-1}\) | 0 | -2 | 4 | 2 |
b) \(\frac{4n-3}{3n-1}\)là số nguyên
\(\Rightarrow4n-3⋮3n-1\Rightarrow12n-9⋮3n-1\)
\(\Rightarrow4\left(3n-1\right)-5⋮3n-1\Rightarrow3n-1\inƯ\left(5\right)=[\pm1;\pm5]\)
+3n-1=1\(\Rightarrow\)n=\(\frac{2}{3}\)(loại)
+3n-1=-1\(\Rightarrow\)n=0(TM)
+3n-1=5\(\Rightarrow\)n=2(TM)
+3n-1=-5\(\Rightarrow\)n=\(\frac{-4}{3}\)(loại)
TM là thỏa mãn
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(A=\frac{2\left(n-3\right)+7}{n-3}+\frac{3\left(n-3\right)+4}{n-3}+\frac{4\left(n-3\right)+7}{n-3}\)
\(A=2+\frac{7}{n-3}+3+\frac{4}{n-3}+4+\frac{7}{n-3}\)
\(A=9+\frac{7+4+7}{n-3}\)
\(A=9+\frac{18}{n-3}\)
=> A là phân số <=> \(\frac{18}{n-3}\)là phân số <=>n - 3 khác Ư ( 18 ) <=> n - 3 khác ( 1 ; -1 ; 2 ; -2 ; .. ;18 ; -18 )
Tự làm nha
b, A thuộc Z <=> \(\frac{18}{n-3}\)l thuộc Z <=> n -3 thuộc Ư ( 18 ) <=<> .....
1, Ta có : ĐK \(n\ne1\)
a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)
để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)
Ta có bảng sau:
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
vậy n=-6, 0,2, 8
b, Ta có ĐK \(n\ne-\frac{1}{3}\)
\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)
để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3
c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)
\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)
để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)
kẻ bảng tìm giá trị n
d, ĐK : \(n\ne1\)phân tích:
\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)
để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n
2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)
hay \(2n+3\notinƯ\left(5\right)\)
kẻ bảng tìm giá trị của n
c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất
Và\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất và < 0 vì 5 là số dương
nên\(2n+3=-1\Rightarrow n=-2\)
thay n vào tính A vậy max A =7
để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất
\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0
vậy\(2n+3=1\Rightarrow n=-1\)
thay n vào để tìm min A=-3
Để phân số A=\(\frac{4n+1}{n-1}\)thỏa mãn điều kiện thì:
4n+1 chia hết cho n-1
4n+1=4n-4+5
=4.(n-1)+5
Vì 4.(n-1) chia hết cho (n-1) nên 5 phải chia hết cho (n-1)
=> (n-1) thuộc Ư(5)=-1,1,-5,5
Nếu n-1=-1 =>n=0
n-1=1 =>n=2
n-1=-5 =>n=-4
n-1=5 =>n=6
Vì n là số nguyên nên ta có n=0, n=2, n=6
Vậy n=0, n=2, n=6