Chứng minh A = \(2+2^2+2^3+...+2^{60}\) chia hết cho 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!
chung minh chia het cho 3
ta co khi dung tinh chat phan phoiVA GHEP CAP A=2(1+2)+2^3(1+2)+............................................................+2^59(1+2)
A=2*3+2^3*3+......................................................................+2^59*3
A=3(2+2^3+......................................+2^59)
TU DO SUY RA A CHIA HET CHO 3
CHUNG MINH A CHIA HET CHO 7
TA CO DUNG TINH CHAT PHAN PHOI VA GHEP CAP A=2(1+2+4)+..................................................................+2^58(1+2+4)
A=2*7+...................................................................+2^58*7
A=7(2+...................................+2^58)
TU DO SUY BRA A CHIA HET CHO 7
CHUNG MINH A CHIA HET CHO 15
DUNG TINH CHAT PHAN PHOI VA GHEP CAP
A=2(1+2+4+8)+....................................+2^57(1+2+4+8)
A=2*15+............................................+2^57*15
A=15(2+.....................+2^57)
TỪ ĐÓ SUY RA A CHIA HẾT CHỖ 15
CAI DAU LA GHEP DOI ;THU HAI GHEP 3 ;THU 3 GHEP 4
CHO MÌNH THẬT NHIỀU LIKE NHÉ CẢM ƠN
A=2(1+2)+2^3(1+2)+...+2^59(1+2)
A=2.3+2^3.3+...+2^59.3
A=3(2+2^3+...+2^59) chia hết cho 3
Vậy a chia hết cho 3
A=2.(1+2+4)+...+2^58(1+2+4)
A=2.7+...+2^58.7
A=7.(2+..+2^58) chia hết cho7
Vậy A chia hết cho 7
A=2(1+2+4+8)+...+2^57(1+2+4+8)
A=2.15+...+2^57.15
A=15.(2+...+2^57) chia hết cho 15
Vậy A chia hết cho 15
Vậy A chia hết cho 3,7,15
A = 2 + 2^2 + 2^3+ ....+ 2^60
=> 2 x A = 2 x (2 + 2^2 + 2^3+ ....+ 2^60)
= 2^2 + 2^3+ ....+ 2^61
2 x A - A = (2^2 + 2^3+ ....+ 2^61) - (2 + 2^2 + 2^3+ ....+ 2^60)
=> A = 2^61 - 2 = 2x(2^60-1)
tích mik nha
Nguyễn Hà Linh
A=2+2^2+2^3+...+2^60
=>A=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=>A=1.(2+2^2+2^3)+...+2^57(2+2^2+2^3)
=>A=1.14+...+2^57.14
=>A=14(1+...+2^57)
=>A=7.2.(1+...+2^57)
=>A chia hết cho 7
=>dpcm
Ta có \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(2^0+2^1+2^2\right)+2^4\left(2^0+2^1+2^2\right)+...+2^{58}\left(2^0+2^1+2^2\right)\)
\(A=7.2+7.2^4+...+7.2^{58}\)
\(A=7\left(2+2^4+...+2^{58}\right)⋮7\)
Vậy ta có đpcm.