giải giúp mình nhé :
cho hình thang ABCD (AB//CD) các tia phân giác của các góc C và góc D cắt nhau tại điểm I thuộc cạnh AB. Chứng minh AD=AB+CD
mình cần gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là điểm thuộc AD sao cho IK // AB // CD
Ta có : IK // AB => Góc BAI = góc IAK = góc AIK
=> Tam giác KAI cân tại K => AK = KI
Tương tự, ta cũng có tam giác DKI cân tại K => IK = AD
=> K là trung điểm AD => IK là đường trung bình của hình thang ABCD
Do đó : AD = 2KI = \(2.\frac{AB+CD}{2}=AB+CD\)
Ta có: \(\widehat{KAB}=\widehat{KAD}\)(AK là phân giác của góc BAD)
\(\widehat{BAK}=\widehat{DKA}\)(hai góc so le trong, AB//DK)
Do đó: \(\widehat{DAK}=\widehat{DKA}\)
=>DA=DK
Ta có: \(\widehat{ABK}=\widehat{CBK}\)(BK là phân giác của góc ABC)
\(\widehat{ABK}=\widehat{CKB}\)(hai góc so le trong, AB//CK)
Do đó: \(\widehat{CBK}=\widehat{CKB}\)
=>CK=CB
Ta có: AD+CB
=DK+KC
=DC
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang