Tìm GTNN của:
\(\frac{4x^2}{x-3}\) với x > 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x ≥ 2(1)
Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2
ta có : B(t^2 +1) = 4t+3
<=>Bt^2 -4t+B-3=0
Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16 ≥ 0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta ≥ 0)
Từ (*) => B^2 -3B-4 ≤ 0
<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4
=>-B ≥ -4(2)
TỪ (1) và (2) => A ≥ 2+(-4)+2016=2014
Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)
Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)
\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)
Áp dụng BĐT Cauchy
\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)
\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)
Áp dụng bđt Cauchy
\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)
Vậy Min A=2014 khi x=1/4
\(P=\left(4x^2-4x+1\right)+3.\left(x+1+\frac{1}{4x}\right)+2008\)
= \(\left(2x-1\right)^2+3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)^2+2008\) \(\ge\) 0 + 3.0 + 2008 = 2008 với mọi x > 0
=> Min P = 2008 khi 2x -1 = 0 và \(\sqrt{x}=\frac{1}{2\sqrt{x}}\) <=> x = 1/2
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)