Một số tự nhiên a : 7 dư 5; chia 13 dư 4. Nếu đem số đó chia 91 thì dư bao nhiêu ?
Khó wá ak! Xin hãy giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia 7 dư 5 suy ra (a-5) chia hết cho 7 suy ra (a+2) chia hết cho 7
a chia 13 dư 11 suy ra (a+11) chia hết cho 13 suy ra (a+2) chia hết cho 13
suy ra (a+2) thuộc BC(7,13)
Vì ƯCLN(7,13)=1 suy ra BCNN(7,13)=91
suy ra +2 chia hết cho 91
suy ra a chia 91 -2=89
Vậy a chia 91 dư 89
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
\(A=7m+5\Rightarrow A+2=7m+7⋮7\)
\(A=13n+11\Rightarrow A+2=13n+13⋮13\)
\(\Leftrightarrow A+2⋮7;13\)
Mà (7;13)=1 nên A+2 chia hết cho 7.13 hay chia hết cho 91
Vậy A chia cho 91 dư 89
=> a+9 chia hết cho 7 và 13. Vì 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7x13=91
=> a chia 91 dư 91-9=82
Ck ơi chk rảnh zữ z