1/2.4 + 1/4.6+1/6.8+...+1/20.22
1+2/3+2/6+2/10+2/15+...+2/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{20\cdot22}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{20}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{11}{22}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{5}{11}\)
\(=\dfrac{5}{22}\)
\(B=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+...+\frac{3}{20.22}\)
\(=\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+...+\frac{1}{20.22}\)
\(=\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
\(=\frac{1}{4}-\frac{1}{22}\)
\(=\frac{9}{44}\)
BÀi 1: Tính :
B=2.4+4.6+6.8+8.10+......+20.22
GIẢI TỪNG BƯỚC HỘ MK NHÉ !!! AI NHANH MK TICK!!!!!!!!!!
\(6B=2.4.6+4.6.6+6.8.6+8.10.6+...+20.22.6.\)
\(6B=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+8.10.\left(12-6\right)+...+20.22.\left(24-18\right)\)
\(6B=2.4.6-2.4.6+4.6.8-4.6.8+6.8.10-6.8.10+8.10.12-...-18.20.22+20.22.24\)
\(6B=20.22.24\Rightarrow B=\frac{20.22.24}{6}=4.20.22=1760\)
\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)
\(=\frac{11}{15}\)
~ Hok tốt ~
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)
\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)
\(=4.\frac{502}{1005}=\frac{2008}{1005}\)
~ Hok tốt ~
a) Ta có: \(\dfrac{1}{2022}-\dfrac{5}{2\cdot4}-\dfrac{5}{4\cdot6}-\dfrac{5}{6\cdot8}-...-\dfrac{5}{2020\cdot2022}\)
\(=\dfrac{1}{2022}-5\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2022}-\dfrac{5}{2}\cdot\dfrac{1010}{2022}\)
\(=\dfrac{1}{2022}-\dfrac{2025}{2022}=\dfrac{-1262}{1011}\)
b) Ta có: \(\dfrac{2^2}{1\cdot3}+\dfrac{2^2}{3\cdot5}+...+\dfrac{2^2}{197\cdot199}\)
\(=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{197\cdot199}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)
\(=2\left(1-\dfrac{1}{199}\right)\)
\(=2\cdot\dfrac{198}{199}=\dfrac{396}{199}\)
a: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2-10+3}{15}=\dfrac{-5}{15}=\dfrac{-1}{3}\)
b: \(=\left(6+\dfrac{1}{8}-\dfrac{1}{2}\right)\cdot4=\dfrac{48+1-4}{8}\cdot4=\dfrac{45}{2}\)
c: \(=\dfrac{1}{4}\cdot4-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
d: \(F=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2008\cdot2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{1004}{2010}=\dfrac{1004}{1005}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)
a. \(\dfrac{1}{2.4}\) + \(\dfrac{1}{4.6}\) + \(\dfrac{1}{6.8}\) + ...... + \(\dfrac{1}{20.22}\)
= 1/2 ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ..... + 1/20 - 1/22)
=1/2 ( 1/2 - 1/22)
= 1/2 . 5/11
= 5/22
b. 1+ 2/3 + 2/6 + 2/10 +...+ 2/45
=>1/2.(1+2/3+2/6+....+2/45)=1/2+2/6+2/12+...+2/90
=1/2+2/2.3+2/3.4+...+2/9.10
=2.(1/4+3-2/2.3+4-3/3.4+...+10-9/9.10)
=2. ( 1/4+1/2-1/3+1/3-1/4+.....+1/9-1/10)
= 2.( 1/4-1/10)=2.3/20=3/10
=> vì 1/2.*=3/10
=> *=3/10:1/2=3/5
tick mình nhé
B = 1 + \(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) +\(\dfrac{2}{10}\) + \(\dfrac{2}{15}\)+...+ \(\dfrac{2}{45}\)
B = 1 + 2.(\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\)+...+ \(\dfrac{1}{45}\))
B = 1 + \(\dfrac{4}{2}\).(\(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) +\(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ...+ \(\dfrac{1}{45}\))
B = 1 + 4.( \(\dfrac{1}{6}\) +\(\dfrac{1}{12}\)+ \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+...+ \(\dfrac{1}{90}\))
B = 1 + 4.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{9.10}\))
B = 1 + 4 .( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\))
B = 1 + 4.( \(\dfrac{1}{2}\) - \(\dfrac{1}{10}\))
B = 1 + 4. \(\dfrac{2}{5}\)
B = \(\dfrac{13}{5}\)