\(\left(\frac{13}{4}-x\frac{2}{3}\right)\cdot3=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
\(\frac{2}{2.3}\)+ \(\frac{2}{3.4}\)+ \(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)- \(\frac{1}{x+1}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\). \(\frac{1}{2}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2}\)- \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2010}\)
\(\Rightarrow\)\(x+1\)= 2010
\(\Leftrightarrow\) \(x\) = 2010 - 1
\(\Rightarrow\) \(x\)= 2009
Vậy \(x\)= 2009
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
\(=>x+1=2010\)
\(=>x=2009\)
Vậy \(x=2009\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(\frac{13}{4}-x\frac{2}{3}=4:3=\frac{4}{3}\)
\(x\frac{2}{3}=\frac{13}{4}-\frac{4}{3}=\frac{23}{12}\)
\(x=\frac{23}{12}:\frac{2}{3}=\frac{23}{8}\)
k cho minh nha ban
Nhãn