K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2023

a) \(x-4\sqrt{x-2}+2\left(x\ge2\right)\) 

\(=x-4\sqrt{x-2}-2+4\)

\(=\left(x-2\right)-4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2-2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}-2\right)^2\)

b) \(x+4\sqrt{x-2}+2\left(x\ge2\right)\)

\(=x+4\sqrt{x-2}+4-2\)

\(=\left(x-2\right)+4\sqrt{x-2}+4\)

\(=\left(\sqrt{x-2}\right)^2+2\cdot2\cdot\sqrt{x-2}+2^2\)

\(=\left(\sqrt{x-2}+2\right)^2\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:
a.

$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$

b. 

$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$

c.

$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$

$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$

d.

$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$

$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$

$=(\sqrt{x}-2)(\sqrt{x}+1)^2$

1 tháng 4 2017

mình tưởng lopw 9 mới học căn

2 tháng 4 2018

em chịu bác lớp 7 học rui

14 tháng 2 2020

\(x\sqrt{x}-3x+4\sqrt{x}-2=x\sqrt{x}-x-2x+2\sqrt{x}+2\sqrt{x}-2\)

\(=x\left(\sqrt{x}-1\right)-2\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)

\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

c, ĐK: \(x-2>0\Rightarrow x>2\)

\(2log_5\left(x-2\right)=log_59\\ \Leftrightarrow log_5\left(x-2\right)^2=log_59\\ \Leftrightarrow\left(x-2\right)^2=3^2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5.

d, ĐK: \(x-1>0\Leftrightarrow x>1\)

\(log_2\left(3x+1\right)=2-log_2\left(x-1\right)\\ \Leftrightarrow log_2\left(3x+1\right)\left(x-1\right)=2\\ \Leftrightarrow3x^2-2x-1=4\\ \Leftrightarrow3x^2-2x-5=0\\ \Leftrightarrow\left(3x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm \(x=\dfrac{5}{3}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Tọa độ giao điểm của hai đường thẳng  \({\Delta _1};{\Delta _2}\)là nghiệm  của hệ phương trình \(\left\{ \begin{array}{l}\sqrt 3 x + y - 4 = 0\\x + \sqrt 3 y - 2\sqrt 3  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt 3 \\y = 1\end{array} \right.\)

b)  Ta có: \(\cos \left( {{\Delta _1};{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2} \Rightarrow \left( {{\Delta _1};{\Delta _2}} \right) = {30^o}\)

Vậy số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\) là \({30^o}\).

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Lời giải:

$x\sqrt{x}-3x+4\sqrt{x}-2=(x\sqrt{x}-x)-(2x-2\sqrt{x})+(2\sqrt{x}-2)$

$=x(\sqrt{x}-1)+2\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)$

$=(\sqrt{x}-1)(x+2\sqrt{x}+2)$

25 tháng 12 2016

đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)

\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)

Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)

Bây giờ thay t vào là ra

25 tháng 12 2016

tính ra \(I=\frac{-\pi}{6}\) nhé