Vẽ hai góc xOy và yOz là kề bù và hai góc bằng nhau Tính số đo mỗi góc đó Vẽ tia đối OM của tia Oy Viết tên các cặp góc bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) góc xOy và góc yOz kề bù (GT)
=> góc xOy + góc yOz = 180 độ (t/c)
Mà góc xOy = 2 . góc yOz (GT)
=> 2 . góc yOz + góc yOz = 180 độ (t/c bắc cầu)
3 . góc yOz = 180 độ
góc yOz = 60 độ (1)
b) xOy và yOz là 2 góc kề bù (GT)
=> Ox và Oz đối nhau
xOy' và yOz là 2 góc đối đỉnh (do Oy và Oy' đối nhau; Ox và Oz đối nhau)
=> góc xOy' = góc yOz (2)
Từ (1) và (2) => góc xOy' = 60 độ (t/c bắc cầu)
c) Các cặp góc đối đỉnh: xOy' và yOz; xOy và y'Oz
Ta có xOy + yOz = 180o (kề bù)
Mà xOy = 2yOz <=> \(\frac{xOy}{2}=\frac{yOz}{1}=\frac{xOy+yOz}{2+1}=\frac{180^o}{3}=60^o\)
=> xOy = 60o . 2 = 120o
yOz = 60o . 1 = 60o
yOz kề bù với xOy
=> yOz + xOy = 180o
=> yOz = 150o
Ot là p/g của xOy => xOt = tOy = xOy/2 = 15o
Om là p/g của yOz => zOm = yOm = yOz/2 = 75o
Vì yOz kề bù với xOy
=> Tia Ox,Oz đối nhau
=> zOm và xOm kề bù
=> zOm + xOm = 180o => xOm = 105o
Vì xOt < xOm ( 15o<105o)
=> Ot nằm giữa Ox, Om
=> xOt + tOm = xOm
=> tOm = 90o
Có xOn + xOm = 105o +75o = 180o
=> xOn và xOm kề bù
=> Om, On đối nhau
Lời giải:
a. Hai góc kề bù:
$\widehat{xOy}$ và $\widehat{yOm}$
b.
Vì $\widehat{xOy}$ và $\widehat{yOm}$ kề bù nên:
$\widehat{xOy}+\widehat{yOm}=180^0$
$\widehat{yOm}=180^0-\widehat{xOy}=180^0-60^0=120^0$
c.
Vì $Om$ là phân giác $\widehat{xOy}$ nên $\widehat{yOt}=\widehat{xOt}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}.60^0=30^0$
$\widehat{xOt}$ và $\widehat{tOm}$ là 2 góc kề bù nên:
$\widehat{xOt}+\widehat{tOm}=180^0$
$\widehat{tOm}=180^0-\widehat{xOt}=180^0-30^0=150^0$
a, \(\widehat{xOy}\) + \(\widehat{yOz}\) = 1800; \(\widehat{xOy}\) = \(\widehat{yOz}\) ⇒ 2\(\widehat{xOy}\) = 1800
⇒ \(\widehat{yOz}\) = \(\widehat{xOy}\) = 1800 : 2 = 900
b, Các cặp góc bằng nhau là:
\(\widehat{yOz}\) = \(\widehat{xOm}\); \(\widehat{yOz}\) = \(\widehat{xOy}\); \(\widehat{yOz}\) = \(\widehat{zOm}\);
\(\widehat{zOm}\) = \(\widehat{mOx}\); \(\widehat{zOm}\) = \(\widehat{xOz}\);
\(\widehat{xOm}\) = \(\widehat{xOy}\);