Cho hình bình hành ABCD.Gọi K,I lần lượt là trung điểm của các cạnh AB và CD.Chứng minh: a)AI = CK và IAC = KCA ; b) AI // CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AK = 1212 AB
IC = 1212 DC
mà AB = DC (vì ABCD là hình bình hành)
=> AK = IC
=> AK // IC (vì AB // DC)
=> AKCI là hình bình hành
=> AI // KC
b) Xét ΔABMΔABM có:
AK = KB (gt)
AM // KN (vì AI // KC)
=> BN = MN (1)
Xét ΔDNCΔDNC có:
DI = IC (gt)
IM // CN (vì AI // KC)
=> DM = MN (2)
Từ 1 và 2 =>DM=MN=NB
a: Sửa đề; ABCD là hình bình hành
ABCD là hình bình hành
=>AB=CD(1)
K là trung điểm của AB
=>\(KA=KB=\dfrac{AB}{2}\left(2\right)\)
I là trung điểm của CD
=>\(IC=ID=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra KA=KB=IC=ID
Xét ΔADI và ΔCBK có
AD=CB
\(\widehat{ADI}=\widehat{CBK}\)(ABCD là hình bình hành)
DI=BK
Do đó: ΔADI=ΔCBK
=>AI=CK và \(\widehat{DAI}=\widehat{BCK}\)
Xét ΔDAC và ΔBCA có
DA=BC
AC chung
DC=BA
Do đó: ΔDAC=ΔBCA
=>\(\widehat{DAC}=\widehat{BCA}\)
Ta có: \(\widehat{DAI}+\widehat{IAC}=\widehat{DAC}\)
\(\widehat{BCK}+\widehat{KCA}=\widehat{BCA}\)
mà \(\widehat{DAI}=\widehat{BCK};\widehat{DAC}=\widehat{BCA}\)
nên \(\widehat{IAC}=\widehat{KCA}\)
b: ta có: \(\widehat{IAC}=\widehat{KCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AI//CK
a: ABCD là hình bình hành ròi nha bạn
b: Xét tứ giác AKCH co
AK//HC
AK=HC
Do đó: AKCH là hình bình hành
=>AH//KC
Xét ΔDQC có
H là trung điểm của DC
HP//QC
Do đó: P là trung điểm của DQ
Xét ΔABP có
K là trung điểm của BA
KQ//AP
Do đó: Q là trung điểm củaBP
=>DP=PQ=QB
mọi người giúp em với ạ và cho em xin hình vẽ luôn với ạ