K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1

a) Nhập hàm số y = –3x + 3 trên ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số.

b) Nhập hàm số y = \(\dfrac{1}{2}x-4\) trên ô lệnh, màn hình sẽ hiển thị đồ thị của hàm số

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=-x^2+4x-3 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

b)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2+2 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

c)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=1/2x^2+x+1 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

d)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2-4x+4 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

Câu 1: 

y=-3x+2

a=-3; b=2

y=5x

a=5; b=0

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(y' = 2.3{{\rm{x}}^2} - \frac{1}{2}.2{\rm{x}} + 4.1 - 0 = 6{{\rm{x}}^2} - x + 4\).

b) \(y' = \frac{{{{\left( { - 2{\rm{x}} + 3} \right)}^\prime }.\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).{{\left( {{\rm{x}} - 4} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

\( = \frac{{ - 2\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

\( = \frac{{ - 2{\rm{x}} + 8 + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}} = \frac{5}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)

c) \(y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 3} \right)}^\prime }\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right){{\left( {{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

\( = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\) \( = \frac{{2{{\rm{x}}^2} - 2{\rm{x}} - 2{\rm{x}} + 2 - {x^2} + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

\( = \frac{{{x^2} - 2{\rm{x}} - 1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)

d) \(y' = {\left( {\sqrt 5 .\sqrt x } \right)^\prime } = \sqrt 5 .\frac{1}{{2\sqrt x }} = \frac{{\sqrt 5 }}{{2\sqrt x }} = \frac{5}{{2\sqrt {5x} }}\).

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)

Trục đối xứng là x=2

Giao điểm của parabol với trục tung là (0;-3)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)

Trục đối xứng là x=-1

Giao điểm của parabol với trục tung là (0;1)

Giao điểm của parabol với trục hoành là (-1;0)

Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)

Trục đối xứng là x=0

Giao điểm của parabol với trục tung là (0;-2)

Cho x=1=>y=-3

=> Điểm A(1;-3) thuộc đồ thị.

Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Tham khảo:

a:

b: 

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

20 tháng 8 2023

a, \(y=3x^4-7x^3+3x^2+1\)

\(y'=12x^3-21x^2+6x\)

b, \(y=\left(x^2-x\right)^3\)

\(y'=3\left(x^2-x\right)^2\left(2x-1\right)\)

c, \(y=\dfrac{4x-1}{2x+1}\)

\(y'=\dfrac{4+2}{\left(2x+1\right)^2}\)

\(y'=\dfrac{6}{\left(2x+1\right)^2}\)

a: y=3x^4-7x^3+3x^2+1

=>y'=3*4x^3-7*3x^2+3*2x

=12x^3-21x^2+6x

b: \(y'=\left[\left(x^2-x\right)^3\right]'\)

\(=3\left(2x-1\right)\left(x^2-x\right)^2\)

c: \(y'=\dfrac{\left(4x-1\right)'\left(2x+1\right)-\left(4x-1\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)

\(=\dfrac{4\left(2x+1\right)-2\left(4x-1\right)}{\left(2x+1\right)^2}=\dfrac{6}{\left(2x+1\right)^2}\)

a: 

Bảng giá trị:

x-2-1012
y1/161/41416

loading...

b: 

Bảng giá trị:

x-2-1012
y16411/41/16
 

loading...