K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

a) ta có theo công thức lượng giác : 

xét trong tam giác vuông AHB ta có AK.AB=AH2

mặt khác trong tam giác vuông ABC có : AH2=HC.HB 

=> AK.AB=HB.HC (=AH2)

 

16 tháng 6 2016

a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có

góc KAH =góc HAB 

=> tam giác AKH đồng dạng tam giác AHB (g-g)

=> AK/AH=AH/AB

=> AH^2=AK.AB (1)

tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )

(1),(2)=> AK.AB=BH.CH (đpcm)

b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC 

ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )

ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )

=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)

2 tháng 10 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có đường cao AH

⇒ AH2 = HC.HB (1)

Xét tam giác AHB vuông tại H có đường cao HK

⇒ A H 2  = AK.AB (2)

Từ (1) và (2) ⇒ AK.AB = HC.HB

17 tháng 10 2021

a, Xét tam giác ABH vuông tại H, đường cao HG 

Ta có : \(NH^2=AB.BG\)( hệ thức lượng ) 

b, Xét tam giác AHC vuông tại H, đường cao HK 

Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH 

Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)

16 tháng 10 2021

giúp mk vs ạ cảm ơn

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vơi ΔABC

=>ΔHBA đồng dạng với ΔHAC

b: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

c: AH=căn 9*16=12cm

AB=căn 9*25=15cm

=>AC=20cm

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)