K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a) Vì A là góc vuông

=> A1 = A2 = A / 2= 90* / 2= 45*

  Vì D1 = A2 = 45* ( ở vị trí so le trong)

=> AB // DK

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

20 tháng 2 2018

Bài 1 : Kẻ ON//BC và DM//BC ( N và M thuộc AC )

=> ON//DM

Xét tam giác MED có : OD=OE và ON//DM => EN=NM (1)

Mặt khác ta có DMBC là hình thang cân nên DB=CM 

Mà DB=AE => AE=CM (2)

Cộng vế theo vế 1 và 2 ta có : AE+EN=CM+MN => AN=NC

Xét tam giác AHC có : ON//HC ( vì ON//BC ) và AN=NC => AN=NC ( t/c của đg trung bình ) => đpcm

20 tháng 2 2018

Mk nhầm chỗ cuối là => OA=OH nhé :D

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

20 tháng 12 2020

a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)

b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có

HB=HK(gt)

HA=HD(gt)

Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)

\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)

mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong

nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)

c) Ta có: AB//DK(cmt)

AB⊥AC(ΔABC vuông tại A)

Do đó: DK⊥AC

Xét ΔDAK có 

KH là đường cao ứng với cạnh AD(KH⊥AD)

AC là đường cao ứng với cạnh DK(AC⊥DK)

KH\(\cap\)AC={C}

Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)

⇒DC⊥AK(đpcm)

10 tháng 5 2017

A B C H D E

a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)

Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2

=> AC2=64 (cm) => AC2=8=> AC=8 (cm).

b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD

=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)

c) Nối E với D.

Xét \(\Delta\)AHB và \(\Delta\)EHD:

HB=HD

^AHB=^EHD=900  => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)

HA=HE

=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED

Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)

Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC 

=> AD \(⊥\)EC (đpcm)

10 tháng 5 2017

A B C

a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

102 = 62 + AC2

=> AC2 = 100 - 36 = 64

=> AC =8

30 tháng 12 2019

a, Ta có: AH\(\perp\)BD(gt)

         HB=HD(gt)

\(\Rightarrow\)AH là đường trung trực

\(\Rightarrow\)AB=AD (t/c đường trung trực trong tam giác)

b, Xét tam giác AHB và tam giác EHD có:

\(\widehat{AHB}=\widehat{EHD}=90^0\)(gt)

AH=HE(gt)

BH=HD(GT)

\(\Rightarrow\)Tam giác AHB = Tam giác EHD(c-g-c)

\(\Rightarrow\widehat{BHA}=\widehat{DEH}\)(2 góc tương ứng)

mà chúng có vị trí SLT

\(\Rightarrow\)AB//DE

30 tháng 12 2019

A B C K I H E D 1 1

Cm: a) Xét t/giác ABC có AH là đường cao và AH cũng là đường trung tuyến

=> t/giác ABC cân tại A
=> AB = AD 

(có thể xét hai tam giác để giải)

b) Xét t/giác AHB và t/giác EHD

có BH = HD (gt)

 AH = HE (gt)

  \(\widehat{AHB}=\widehat{EHD}=90^0\)(đối đỉnh)

=> t/giác AHB = t/giác EHD (c.g.c)

=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // ED

c) Xét t/giác ACE có CH là đường cao

CH cũng là đường trung tuyến

=> t/giác ACE cân tại C

=> \(\widehat{EAC}=\widehat{AEC}\)

Xét t/giác DAE có DH là đường cao

DH cũng là đường trung tuyến

 => DAE cân tại D => AD = DE

=> \(\widehat{DAE}=\widehat{DEA}\)

Ta có: \(\widehat{CAE}=\widehat{CAD}+\widehat{DAE}\)

        \(\widehat{CEA}=\widehat{CED}+\widehat{DEA}\)

mà \(\widehat{CAE}=\widehat{AEC}\) (cmt); \(\widehat{DAE}=\widehat{DEA}\)(cmt)

=> \(\widehat{CAD}=\widehat{CED}\)

Xét t/giác ADI và t/giác EDK

có: AD = DE (cmt)

 \(\widehat{IAD}=\widehat{KED}\) (cmt)

 \(\widehat{IDA}=\widehat{KDE}\) (đối đỉnh)

=> t/giác ADI = t/giác EDK (g.c.g)

=> DI = DK (2 cạnh t/ứng)

d) xem lại đề