Cho tam giác ABC có 2 đường cao BE và CF cắt nhau tại H . Trên nửa mặt phẳng ko chứa A kẻ Bx vuông góc AB;Cy vuông góc AC. Bx cắt Cy tại K; HK cắt BC tại i.Gọi O là trung điểm AK; HO cắt Ai tại G. CM: G là trọng tâm tam giác ABC
Giúp mk vs mk tick cho 2 cái! THANKS!
Ta có: CF\(⊥\)AB, Bx\(⊥\)AB => CF//Bx (Q/hệ song song vuông góc) hay CH//BK (1)
BE\(⊥\)AC, Cy\(⊥\)AC => BE//Cy hay BH//CK (2)
Từ (1) và (2) => CH=BK và BH=CK (Tính chất đoạn chắn)
CH//BK => ^CHI=^BKI và ^HCI=^KBI (So le trong)
Xét \(\Delta\)HIC và \(\Delta\)KIB:
^CHI=^BKI
CH=BK (cmt) => \(\Delta\)HIC=\(\Delta\)KIB (g.c.g)
^HCI=^KBI
=> IC=IB (2 cạnh tương ứng) => I là trung điểm của BC
=> IH=IK (2 cạnh tương ứng) => I là trung điểm của HK
Xét \(\Delta\)AHK: O là trung điểm của AK và I là trung điểm của HK (cmt)
Mà HO cắt AI tại G => G là trọng tâm của \(\Delta\)AHK.=> AG=2/3AI.
Xét \(\Delta\)ABC: I là trung điểm của BC. G \(\in\)AI. Mà AG=2/3AI (cmt)
=> G là trong tâm của tam giác ABC (đpcm)
Nhớ k mình nha !!!