Cho tam giác ABC vuông tại A,gọi M la trung điểm BC.CM :MA=\(\frac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM => 1/2 BC
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC (đpcm)
\(BM=CM=\frac{1}{2}BC\)
Mà BM=CM=AM
\(\Rightarrow AM=\frac{1}{2}BC\)(1)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền nên ta có:
M là trung điểm của BC nên AM là đường trung tuyến (2)
Từ (1) và (2) ta có ;
\(\Delta ABC\)vuông tại A
Lời giải:
a.
Xét tam giác $AMB$ và $EMC$ có:
$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)
$AM=EM$
$MB=MC$
$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)
b.
Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$
Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$
Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)
c.
Vì $\triangle AMB=\triangle EMC$ nên:
$AB=EC$
Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$
Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)
$AC$ chung
$EC=BA$ (cmt)
$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)
$\Rightarrow EA=BC$
Mà $EA=2AM$ nên $2AM=BC$ (đpcm)
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
c: AB//EC
AB\(\perp\)AC
Do đó: EC\(\perp\)AC tại C
Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
AC//BE
AC\(\perp\)CE
Do đó: BE\(\perp\)CE
=>ΔBEC vuông tại E
#)Giải : (Hình tự vẽ lười lắm òi)
Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)
Ta có : \(\widehat{BAC}=\widehat{ACD}\)
\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)
AC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow AD=BC\)
Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)
M là trung điểm AD => AM = 1/2 AD (1)
và AM = MD
Xét ∆AMB và ∆AMC có :
AM = MD (cmt)
\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)
MB = MC (M là trung điểm BC)
do đó ∆AMB = ∆AMC (c-g-c)
=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)
Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong
=> AB // CD
=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)
Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)
Xét ∆ABC và ∆CDA có :
AB = AC (cmt)
\(\widehat{BAC}=\widehat{ACD}\)
AC chung
do đó : ∆ABC = ∆CDA
=> BC = AD (2)
Từ (1),(2) => đpcm
a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :
BM = MC ( M là trung điểm của BC )
AM = MD ( giả thiết )
\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )
=> \(\Delta AMC\)= \(\Delta DMB\) ( c.g.c )
=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )
b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)
Vì BM = MA => \(\Delta AMB\)cân tại M .
=> \(\widehat{MAB}=\widehat{MBA}\)
Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)( \(\Delta ABC\perp A\))
hay \(\widehat{ABM}+\widehat{ACM}=90^0\)
vì \(\widehat{MCA}=\widehat{MDB}\); \(\widehat{MAB}=\widehat{MBA}\)
=> \(\widehat{BAM}+\widehat{BDM}=90^0\)
=> \(\widehat{BAD}=90^0\)
c , Vì AM = BM
mà BM = \(\frac{1}{2}BC\)
=> AM = \(\frac{1}{2}BC\)
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC