K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 

13 tháng 7 2015

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM => 1/2 BC 

13 tháng 7 2015

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2)  
Từ (1) và (2) ta có AM = 1/2 BC           (đpcm)
 

4 tháng 8 2021

\(BM=CM=\frac{1}{2}BC\)

Mà BM=CM=AM

\(\Rightarrow AM=\frac{1}{2}BC\)(1)

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền nên ta có:

M là trung điểm của BC nên AM là đường trung tuyến (2)

Từ (1) và (2) ta có ;

\(\Delta ABC\)vuông tại A

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

Xét tam giác $AMB$ và $EMC$ có:

$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)

$AM=EM$

$MB=MC$

$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)

b.

Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$

Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$

Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)

c.

Vì $\triangle AMB=\triangle EMC$ nên:

$AB=EC$

Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$

Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)

$AC$ chung

$EC=BA$ (cmt)

$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)

$\Rightarrow EA=BC$

Mà $EA=2AM$ nên $2AM=BC$ (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

30 tháng 11 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC

b: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

c: AB//EC

AB\(\perp\)AC

Do đó: EC\(\perp\)AC tại C

Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

AC//BE

AC\(\perp\)CE

Do đó: BE\(\perp\)CE

=>ΔBEC vuông tại E

1 tháng 8 2019

#)Giải : (Hình tự vẽ lười lắm òi)

Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)

Ta có : \(\widehat{BAC}=\widehat{ACD}\)

\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)

AC là cạnh chung 

\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow AD=BC\)

Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)

1 tháng 8 2019

A B C D M

M là trung điểm AD => AM = 1/2 AD (1)

                                và AM = MD

Xét ∆AMB và ∆AMC có :

AM = MD (cmt)

\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)

MB = MC (M là trung điểm BC)

do đó ∆AMB = ∆AMC (c-g-c)

=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)

Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong

=> AB // CD

=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)

Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)

Xét ∆ABC và ∆CDA có :

AB = AC (cmt)

\(\widehat{BAC}=\widehat{ACD}\)

AC chung

do đó : ∆ABC = ∆CDA

=> BC = AD (2)

Từ (1),(2) => đpcm

10 tháng 2 2021

A B C M D

a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :

BM = MC ( M là trung điểm của BC )

AM = MD ( giả thiết )

\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )

=> \(\Delta AMC\)\(\Delta DMB\) ( c.g.c )

=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )

b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)

Vì BM = MA => \(\Delta AMB\)cân tại M .

=> \(\widehat{MAB}=\widehat{MBA}\)

Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)\(\Delta ABC\perp A\))

hay \(\widehat{ABM}+\widehat{ACM}=90^0\)

vì \(\widehat{MCA}=\widehat{MDB}\)\(\widehat{MAB}=\widehat{MBA}\)

=> \(\widehat{BAM}+\widehat{BDM}=90^0\)

=> \(\widehat{BAD}=90^0\)

c , Vì AM = BM

mà BM = \(\frac{1}{2}BC\)

=> AM = \(\frac{1}{2}BC\)