1+1/5+1/25+.........+1/15625
mọi người giúp em làm câu này với ạ
em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
Từ câu a ta có AE=AF \(\Rightarrow\Delta AEF\) vuông cân tại A
\(\Rightarrow AI\) đồng thời là phân giác \(\widehat{FAE}\Rightarrow\widehat{KAF}=\dfrac{1}{2}\widehat{FAE}=\dfrac{1}{2}.90^0=45^0\)
Lại có ABCD là hình vuông \(\Rightarrow\widehat{ACF}=45^0\)
\(\Rightarrow\widehat{ACF}=\widehat{KAF}\)
Xét hai tam giác AKF và CAF có: \(\left\{{}\begin{matrix}\widehat{ACF}=\widehat{KAF}\\\widehat{AFC}\text{ chung}\end{matrix}\right.\)
\(\Rightarrow\Delta AKF\sim\Delta CAF\left(g.g\right)\Rightarrow\dfrac{AF}{CF}=\dfrac{FK}{AF}\Rightarrow AF^2=KF.CF\)
1. English is more interesting than music.
2. Today they are not as happy as they were yesterday.
3. Ha Noi is not as small as Hai Duong.
4. Mai's sister is not as pretty as her.
6. You have got more money than me.
7. Art is not as difficult as French.
8. Nam's father is more careful than him.
9. No one in our town is as rich as Mr Ron.
10. He is the most intelligent in my class.
11. Everest is the highest mountain in the world.
12. Minh is the fattest person in my group.
13. I can't swim as far as Jan.
14B 15C 16A 17C 18B 19C 20B
Bài III:
1: Ta có: \(\sqrt{x-3}=5\)
\(\Leftrightarrow x-3=25\)
hay x=28
2: Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}-5}=\dfrac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}-6=\sqrt{x}-5\)
\(\Leftrightarrow2\sqrt{x}=1\)
hay \(x=\dfrac{1}{4}\)
Sửa đề thành : S=1+1/5+1/25+.........+1/15625
5xS=1+1/5+1/25+....+1/3125
5xS-S=(1+1/5+1/25+...+1/3125)-(1/5+1/25+1/125+....+1/15625)
4xS=1-1/15625=15624/15625
1xS=15624/15625:4=15624/15625x1/4=15624/62500=3906/15625
\(#040510\)
\(S=1+\dfrac{1}{5}+\dfrac{1}{25}+...+\dfrac{1}{15625}\)
\(5S=5+1+\dfrac{1}{5}+...+\dfrac{1}{3125}\)
\(5S-S=5-\dfrac{1}{15625}\)
\(S=\dfrac{5.15625-1}{4.15625}\)
\(S=\dfrac{78124}{4.15625}=\dfrac{19531}{15625}\)