(x-3)x+1 - (x-3)x+11 = 0
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}x+\dfrac{2}{3}\left(x-1\right)=0\\ \dfrac{1}{3}x+\dfrac{2}{3}x-\dfrac{2}{3}=0\\ x=\dfrac{2}{3}\)
Ta có: \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+x\left(7x-6\right)=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+7x^2-6x=0\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
a: (x-1)(x+2)(-x-3)=0
=>(x-1)(x+2)(x+3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
b: (x-7)(x+3)<0
TH1: \(\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)
=>-3<x<7
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
\(\Rightarrow x\left(x-3\right)-\left(x-3\right)=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
-Để phương trình trên là bất phương trình bậc nhất 1 ẩn thì:
\(m^2-1=0\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)=0\)
\(\Leftrightarrow m=1\) hay \(m=-1\)
(x - 3)x + 1 - (x - 3)x + 11 = 0
(x - 3)x + 1 . [1 - (x - 3)10] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^{x+1}=0\\1-\left(x-3\right)^{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{10}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\\left(x-3\right)^{10}=1\end{cases}}\)
Với \(\left(x-3\right)^{10}=1\)
Thi \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)