K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2023

A B C D O M N

Xét tg OAM và tg OCN có

\(\widehat{BAC}=\widehat{ACD}\) (góc so le trong)

OA=OC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

\(\widehat{AOM}=\widehat{CON}\) (góc đối đỉnh)

=> tg OAM = tg OCN (g.c.g) => AM=CN

Ta có

AB=CD (cạnh đối hbh) => AB-AM=CD-CN => MB=ND (1)

Ta có

AB//CD (cạnh đối hbh) => MB//ND (2)

Từ (1) và (2) => MBND là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

7 tháng 10 2023

Xét tg OAM và tg OCN có

���^=���^ (góc so le trong)

OA=OC (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

���^=���^ (góc đối đỉnh)

=> tg OAM = tg OCN (g.c.g) => AM=CN

Ta có

AB=CD (cạnh đối hbh) => AB-AM=CD-CN => MB=ND (1)

Ta có

AB//CD (cạnh đối hbh) => MB//ND (2)

Từ (1) và (2) => MBND là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

27 tháng 11 2023

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành

17 tháng 10 2021

Xét ΔAOM và ΔCON có 

\(\widehat{MAO}=\widehat{NCO}\)

OA=OC

\(\widehat{AOM}=\widehat{CON}\)

Do đó: ΔAOM=ΔCON

Suy ra:OM=ON

hay M và N đối xứng nhau qua O

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

4 tháng 5 2019

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

⇒ OB = OD.

+ ABCD là hình bình hành ⇒ AB // CD ⇒ Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc SLT).

Hai tam giác BOM và DON có:

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔBOM = ΔDON (g.c.g)

⇒ OM = ON

⇒ O là trung điểm của MN

⇒ M đối xứng với N qua O.

21 tháng 4 2017

Bài giải:

Hai tam giác BOM và DON có

ˆB1B1^ = ˆD1D1^ (so le trong)

BO = DO (tính chất)

ˆO1O1^ = ˆO2O2^ (đối đỉnh)

nên ∆BOM = ∆DON (g.c.g)

Suy ra OM = ON.

O là trung điểm của MN nên M đối xứng với N qua O

16 tháng 9 2019

A B C D O M N 1 1 2 1

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

\(\Rightarrow OB=OD\)

+ ABCD là hình bình hành  \(\Rightarrow AB//CD\Rightarrow\widehat{B}_1=\widehat{D}_1\) ( hai góc so le trong )

Hai tam giác BOM và DON có:

\(\widehat{B_1}=\widehat{D}_1\)

OB = OD 

\(\widehat{O}_1=\widehat{O}_2\) ( hai góc đối đỉnh )
\(\Rightarrow\Delta BOM=\Delta DON\left(g.c.g\right)\)

\(\Rightarrow OM=ON\)

\(\Rightarrow\)  O là trung điểm của MN

\(\Rightarrow\) M đối xứng với N qua O.

Vậy M đối xứng với N qua O

Chúc bạn học tốt !!!

1 tháng 7 2020

A B C D M O N 1 2

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

=> OB = OD.

+ ABCD là hình bình hành => AB // CD => \(\widehat{B_1}=\widehat{D_1}\)( Hai góc SLT ).

Hai tam giác : BOM và DON có :

\(\widehat{B_1}=\widehat{D_1}\)

OB = OD

\(\widehat{O_1}=\widehat{O_2}\)( 2 góc đối đỉnh )

=> ΔBOM = ΔDON (g.c.g)

=> OM = ON

=> O là trung điểm của MN

=> M đối xứng với N qua O.

Hai tam giác BOM và DON có: