K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Có : \(-\left(x-5\right)^2\le0\)

=> \(-\left(x-5\right)^2+9\le9\)

=> \(Max_B=9\)

<=> \(-\left(x-5\right)^2=0\)

<=> x - 5 = 0

<=> x = 5 

\(B=\left|x-4\right|\left(2-\left|x-4\right|\right)\ge0\forall x\)

Dấu '=' xảy ra khi x=4

3 tháng 10 2021

bạn giải chi tiết hơn đc ko

 

19 tháng 4 2022

-Câu cuối thôi nha bạn :v

\(B=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+\dfrac{4}{5}x+\dfrac{19}{25}\right)=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}+\dfrac{15}{25}\right)=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{15}{5}\le-3\)\(B_{max}=-3\Leftrightarrow x=\dfrac{-2}{5}\)

19 tháng 4 2022

cảm ơn cậu nhìu nha!yeu.  

3 tháng 6 2021

\(T=\left(x_A-2y_A+2\right)\left(x_B-2y_B+2\right)=60>0\)

=> A và B nằm cùng phía so với d

a)Lấy B' đối xứng với B qua d

=> d là trung trực của BB'

Có \(MA+MB=MA+MB'\)

Để MA+MB nn <=> MA+MB' nhỏ nhất <=> M;A;B' thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB'}\) cùng phương

\(BB'\left\{{}\begin{matrix}quaB\left(2;5\right)\\\perp d\Rightarrow vtcp\overrightarrow{n}\left(2;1\right)\end{matrix}\right.\)

\(\Rightarrow BB':2x+y-9=0\)

Gọi \(F=BB'\cap d\) \(\Rightarrow F\left(\dfrac{16}{5};\dfrac{13}{5}\right)\)

F là trung điểm của BB' \(\Rightarrow B'\left(\dfrac{22}{5};\dfrac{1}{5}\right)\)

\(M\in\left(d\right)\Rightarrow M\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AB'}\left(\dfrac{22}{5};-\dfrac{29}{5}\right)\);\(\overrightarrow{AM}\left(2t-2;t-6\right)\)

\(\overrightarrow{AM};\overrightarrow{AB'}\) cp <=> \(\dfrac{22}{5}\left(t-6\right)=-\dfrac{29}{5}\left(2t-2\right)\)

<=>\(t=\dfrac{19}{8}\)

Vậy \(M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

3 tháng 6 2021

b) Có \(MA-MB\le AB\)

\(\Leftrightarrow\left|MA-MB\right|\le AB\)

\(\left|MA-MB\right|\) lớn nhất <=> M;A;B thẳng hàng <=> \(\overrightarrow{AM};\overrightarrow{AB}\) cp

\(M\in\left(2t-2;t\right)\)

\(\Rightarrow\overrightarrow{AM}\left(2t-2;t-6\right)\)\(\overrightarrow{AB}\left(2;-1\right)\)

\(\overrightarrow{AM};\overrightarrow{AB}\) cp <=> \(-1\left(2t-2\right)=2\left(t-6\right)\)

\(\Leftrightarrow t=\dfrac{7}{2}\)

\(\Rightarrow\) \(M\left(5;\dfrac{7}{2}\right)\)

26 tháng 2 2023

\(B=-\dfrac{5}{\left(x+3\right)^2}+1\)

Để phân số \(-\dfrac{5}{\left(x+3\right)^2}\) tồn tại thì \(\left(x+3\right)^2\ne0\) 

Mà \(\left(x+3\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+3\right)^2>0\)

Theo đề bài ta có x là số nguyên nên \(\left(x+3\right)^2\) là số nguyên dương

`=>` GTNN của \(\left(x+3\right)^2\) là 1 hay \(\left(x+3\right)^2\ge1\)

\(\Rightarrow\dfrac{5}{\left(x+3\right)^2}\le\dfrac{5}{1}=5\\ \Rightarrow-\dfrac{5}{\left(x+3\right)^2}\ge-5\\ \Rightarrow B=-\dfrac{5}{\left(x+3\right)^2}+1\ge-5+1=-4\)

Dấu bằng xảy ra khi: \(\left(x+3\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy \(MinB=-4\Leftrightarrow x\in\left\{-4;-2\right\}\)

 

 

29 tháng 5 2022

\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)

Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)

Vậy \(MaxB=41\Leftrightarrow x=y=0\)

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi

\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)

12 tháng 11 2021

GTLN x+y=21+34=55

GTNN x+y=-14-23=-37

12 tháng 11 2021

a: x+y=21+34=55

B=|3-x|+|x+4|>=|3-x+x+4|=7

Dấu = xảy ra khi -4<=x<=3

31 tháng 7 2023

ĐK: \(x\in N;x\ne4\)

a

Ta thấy trong 2 trường hợp \(\sqrt{x}-2>0\) và \(\sqrt{x}-2< 0\) thì Max A xảy ra trong trường hợp \(\sqrt{x}-2>0\Rightarrow\sqrt{x}-2>2\Rightarrow x>4\)

Mà \(x\in N\Rightarrow x\in\left\{5;6;7;....\right\}\Rightarrow x\ge5\Rightarrow\sqrt{x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{x}-2\ge\sqrt{5}-2\\ \Rightarrow\dfrac{3}{\sqrt{x}-2}\le\dfrac{3}{\sqrt{5}-2}\\ \Rightarrow A\le\dfrac{3}{\sqrt{5}-2}=6+3\sqrt{5}\)

Vậy Max A \(=6+3\sqrt{5}\) khi \(x=5\left(thỏa.mãn\right)\)

31 tháng 7 2023

b

ĐK:\(x\in N;x\ne4\)

Min A xảy ra khi \(\sqrt{x}-2< 0\) \(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)

Mà \(x\in N\Rightarrow x\in\left\{0;1;2;3\right\}\)

x0123
A     \(-\dfrac{3}{2}\)\(-3\)\(-\dfrac{6+3\sqrt{2}}{2}\)\(-6-3\sqrt{3}\)

 

Vậy min A \(=-6-3\sqrt{3}\) khi \(x=3\left(thỏa.mãn\right)\)

 

31 tháng 12 2015

a)Giá trị nhỏ nhất của A là 2003

b)Giá trị lớn nhất của B là 9

Tick mình nha