K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét tam giác MON có: \(\frac{{OA}}{{OM}} = \frac{{OB}}{{ON}} = \frac{2}{3}\) nên \(AB//MN\) (Định lý Thales đảo)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{2}{3}\) (Hệ quả của định lý Thales)

Chứng minh tương tự ta được \(\frac{{BC}}{{NP}} = \frac{2}{3};\,\,\frac{{AC}}{{MP}} = \frac{2}{3}\)

\( \Rightarrow \frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{AC}}{{MP}}\)

 \( \Rightarrow \Delta ABC \backsim\Delta MNP\) (c-c-c)

15 tháng 1 2020

A B C H A' O C' B'

kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:

                                 \(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)

                              \(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)

Nguồn: HiệU NguyễN

28 tháng 8 2016

a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)

Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)

Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)

2 tháng 8 2018

PM là đường trung bình của \(\Delta ABC\) nên  \(PM=\frac{1}{2}AC\)

Mà PM cũng là ĐTB của \(\Delta OA'C'\) nên \(PM=\frac{1}{2}A'C'\)

Suy ra: \(AC=A'C'\)

Tương tự, ta có: \(PN=\frac{1}{2}BC,PN=\frac{1}{2}B'C'\Rightarrow BC=B'C'\)

                              \(MN=\frac{1}{2}AB,MN=\frac{1}{2}A'B'\Rightarrow AB=A'B'\)

Vậy \(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)

Chúc bạn học tốt.

Xét ΔOAB có 

M∈OA(gt)

N∈OB(gt)

\(\dfrac{OM}{OA}=\dfrac{ON}{OB}\left(=\dfrac{1}{3}\right)\)

Do đó: MN//AB(Định lí Ta lét đảo)

Xét ΔOAB có 

M∈OA(gt)

N∈OB(gt)

MN//AB(cmt)

Do đó: \(\dfrac{MN}{AB}=\dfrac{OM}{OA}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{MN}{AB}=\dfrac{1}{3}\)(1)

Xét ΔAOC có 

M∈OA(gt)

P∈OC(gt)

\(\dfrac{OM}{OA}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)

Do đó: MP//AC(Định lí Ta lét đảo)

Xét ΔOAC có 

M∈OA(gt)

P∈OC(gt)

MP//AC(cmt)

Do đó: \(\dfrac{MP}{AC}=\dfrac{OM}{OA}\)(Hệ quả của Định lí ta lét)

hay \(\dfrac{MP}{AC}=\dfrac{1}{3}\)(2)

Xét ΔOBC có 

N∈BO(gt)

P∈CO(gt)

\(\dfrac{ON}{OB}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)

Do đó: NP//BC(Định lí Ta lét đảo)

Xét ΔOBC có 

N∈BO(gt)

P∈CO(gt)

NP//BC(cmt)

Do đó: \(\dfrac{NP}{BC}=\dfrac{ON}{OB}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{NP}{BC}=\dfrac{1}{3}\)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)

Xét ΔMNP và ΔABC có

\(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)(cmt)

Do đó: ΔMNP∼ΔABC(C-c-c)