K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2023

\(A=x-x^2-1\)

\(A=-\left(x^2-x+1\right)\)

\(A=-\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)

Và: \(-\dfrac{3}{4}< 0\)

\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)

1 tháng 7 2023

`+)axx2+bxx1=cxx2+axx1<=>2a+b=2c+a<=>2c-a=b`

`+)cxx3+axx1=bxx2+axx1<=>3c+a=2b+a<=>3c=2b<=>c=2/3b`

mà `2c-a=b` nên `a=2c-b=4/3b-b=1/3b`

Khi đó: `cxx2+axx2=2(a+c)=2(1/3b+2/3b)=2b`

Vậy dấu hỏi chấm cần điền là `2`

e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=a^6-1\)

29 tháng 8 2021

lm hết giúp mk vs

 

a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5(nhận) hoặc x=1(loại)

Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)

c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow2x^2-x+1=0\)

hay \(x\in\varnothing\)

 

19 tháng 5 2022

f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)

-Vậy \(A_{min}=4\)

1: =(8+a^3)(8-a^3)=64-a^6

2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x

=x^3-6x-8-x^3+x

=-5x-8

3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x

=2

28 tháng 8 2023

1) \(3x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(3x+5\right)\)

2) \(4x(x-2y)-8y(2y-x)\)

\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)

\(=\left(4x+8y\right)\left(x-2y\right)\)

\(=4\left(x+2y\right)\left(x-2y\right)\)

3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)

\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)

\(=\left(a^2-b^2\right)\left(x-1\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)\)

\(=3x\left(x-a\right)-4a\left(x-a\right)\)

\(=\left(x-a\right)\left(3x-4a\right)\)

5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)

\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)

\(=\left(5x+10y^2\right)\left(x-y\right)^2\)

\(=5\left(x+2y^2\right)\left(x-y\right)^2\)

6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)

\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)

\(=\left(3x+9\right)\left(x-3\right)^2\)

\(=3\left(x+3\right)\left(x-3\right)^2\)

7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)

\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)

\(=\left(x-y\right)\left(a-m\right)^2\)

8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)

\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)

\(=\left(6y^2+9x\right)\left(x-1\right)^2\)

\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)

#Ayumu

5 tháng 6 2021

Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)

Dấu "=" \(x=y=\dfrac{1}{2}\)

5 tháng 6 2021

Đăng cho vui :))

16 tháng 7 2021

giúp mình vớiiii