Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,=(x\(^2\)-6x+9)+10-9
=(x-3)\(^2\)+1
Mà(x-3)\(^2\)\(\ge\)0
nên (x-3)\(^2\)+1>0
b,= -(-4x+x\(^2\))-5
= -(4-4x+x\(^2\))-5+4
= -(2-x)\(^2\)-1
Mà -(2-x)\(^2\)\(\le\)0
nên -(2-x)\(^2\)-1< 0
Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :) Thankssssss
\(\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(=x^4+x^3\left(b-1\right)+x^2\left(a-b\right)-x\left(a+2\right)+2\)
Đồng nhất với đa thức \(x^4-3x+2\), ta có:
\(b-1=0,a-b=0,a+2=3\)
\(\Rightarrow a=1,b=1\)
Chúc bạn học tốt.
a ) \(\left(x-1\right)\left(x+1\right)-2x^2=0\)
\(\Leftrightarrow x^2-1-2x^2=0\)
\(\Leftrightarrow-x^2-1=0\)
\(\Leftrightarrow-x^2=1\)
\(\Leftrightarrow x^2=-1\) ( Vô lý , \(x^2\ge0\forall x\) )
Vậy ko có g/t x thỏa mãn
b ) \(\left(2x+5\right)\left(x^2-3x+1\right)-x\left(2x^2-1\right)=3\)
\(\Leftrightarrow2x\left(x^2-3x+1\right)+5\left(x^2-3x+1\right)-2x^3+x=3\)
\(\Leftrightarrow2x^3-6x^2+2x+5x^2-15x+5-2x^3+x=3\)
\(\Leftrightarrow\left(2x^3-2x^3\right)-\left(6x^2-5x^2\right)+\left(2x-15x+x\right)+5=3\)
\(\Leftrightarrow-x^2-12x+5=3\)
\(\Leftrightarrow-\left(x^2+12x-5\right)=3\)
\(\Leftrightarrow x^2+12x-5=-3\)
\(\Leftrightarrow x^2+12x+36-41=-3\)
\(\Leftrightarrow\left(x+6\right)^2=-3+41\)
\(\Leftrightarrow\left(x+6\right)^2=38\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=\sqrt{38}\\x+6=-\sqrt{38}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\sqrt{38}+6\\x=6-\sqrt{38}\end{matrix}\right.\)
c ) \(\left(x-1\right)2x-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
:D
Chắc là phân tích về hằng đẳng thức rồi cho nó lớn hơn hoặc bằng 1 số dương là ra :))) Nghĩ vậy
Hằng đẳng thức thứ nhất \(\left(x+y\right)^2\ge0\)nên nó luôn dương :v đó là cách đi của bài toán :))
\(A=x-x^2-1\)
\(A=-\left(x^2-x+1\right)\)
\(A=-\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
Và: \(-\dfrac{3}{4}< 0\)
\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)