tìm các giá trị nguyên của n để phân số A =\(\frac{3n+4}{n-1}\)có giá trị là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D
Do A có giá trị nguyên
\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)
Mà \(n-1⋮n-1\)
\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)
Xét \(n-1=-1\Rightarrow n=-4\)
\(n-1=-5\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=1\Rightarrow n=2\)
Vậy ...
A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}
Ta có: n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 5 => n = 6
n - 1 = -5 => n = -4
Vậy n = {2;0;6;-4}
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1
=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1
\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)
=> n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
n - 1 = 3 => n = 3 + 1 = 4
n - 1 = -3 => n = -3 + 1 = -2
=> \(n\in\left\{-2;0;2;4\right\}\)
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Vậy n thuộc {-4;0;2;6}
Để \(\frac{3n+2}{n-1}\)là số nguyên thì 3n + 2 phải chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì 3(n - 1) chia hết cho n - 1)
=> n - 1 thuộc {-1; 1; -5; 5}
=> n thuộc {0; 2; -4; 6}
Vậy...
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
A E Z<=>5/n-1 E Z<=>5 chia hết chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5]
=>n E {-4;0;2;6}
vậy....
Ta có : 3n+2 chia n-1 bằng 3 dư 5 .Để A là số nguyên thì n-1 phải là ước của 5 bao gồm : 1;-1;5;-5
n-1=1=>n=2
n-1=-1 =>n=0
n-1=5=>n=6
n-1=-5=>n=-4
Vậy n thuộc tập hợp bao gồm : -4;0;2;6
De A co gia tri nguyen => 3n + 2 chia het n - 1
=> 3(n-1) + 5 chia het n - 1
Vi 3( n-1 ) chia het n - 1
=> 5 chia het n - 1
=> n - 1 thuoc uoc cua 5 ( chu y: Ca uoc duong va am)
........................................ Den day bn tu lam nhe!
...............................
ta có A=3n+2/n-1
=3(n-1)+5/n-1
=3+5/n-1
để A thuộc Z suy ra 5/n-1 thuộc Z suy ra n-1 thuộc Ư(5)=(-1;1;-5;5)
ta có bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
A | 2 | -2 | 8 | 4 |
vậyn=-4;0;2;6 thì A thuộc Z
ta có : A=\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
để A thuộc Z => 3+ \(\frac{7}{n-1}\)phải thuộc Z => \(\frac{7}{n-1}\in Z\)hay n-1 thuộc ước của 7
bạn tự làm nốt nhé
Ta có
\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay
\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)
Để A có giá trị nguyên
<=> 3n + 4 ⋮ n - 1
=> ( 3n - 3 ) + 7 ⋮ n - 1
=> 3 . ( n - 1 ) + 7 ⋮ n - 1
vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1
=> n - 1 ∈ Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
mọi giá trị n đều thuộc z (chọn)
Vậy x ∈ { - 6 ; 0 ; 2 ; 8 }