Tìm n biết rằng:
n2+3\(⋮\)n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
hay \(n\in\left\{0;8;-8\right\}\)
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+6 chia hết cho n^2+1
=>n+6 chia hết cho n^2+1
=>n^2-36 chia hết cho n^2+1
=>n^2+1-37 chia hết cho n^2+1
=>n^2+1 thuộc {1;37}
=>\(n^2\in\left\{0;36\right\}\)
=>n thuộc {0;6;-6}
Ta thử lại, ta thấy n=-6 và n=6 không thỏa mãn
=>n=0
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a) \(\left(n+3\right)\left(n^2+1\right)=0\)
\(\Rightarrow n+3=0\Rightarrow n=-3\)(do \(n^2+1\ge1>0\))
b) \(\left(n-1\right)\left(n^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-2\\n=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left[{}\begin{matrix}n+3=0\\n^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-3\left(tm\right)\\n^2=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow n=-3\\ b,\Leftrightarrow\left[{}\begin{matrix}n-1=0\\n^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=2\\n=-2\end{matrix}\right.\)
Ta có:
n2 + 2n - 3
= n2 + 3n - n - 3
= n(n + 3) - (n + 3)
= (n - 1)(n + 3)
Nên: n2 + 2n - 3 : n - 1
= (n - 1)(n + 3) : (n - 1)
= n + 3
Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên
ĐK : n nguyên và n khác 1
\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)
Để n^2 + 2n - 3 chia hết cho n - 1
Thì : (n-1)(n+3) chia hết cho n - 1
Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1
Vậy n thuộc Z, n khác 1
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
\(n^2+3⋮n+1\)
\(\Rightarrow n^2+3-n\left(n+1\right)⋮n+1\)
\(\Rightarrow n^2+3-n^2-n⋮n+1\)
\(\Rightarrow3-n⋮n+1\)
\(\Rightarrow3-n+n+1⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\in U\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\left(n\inℕ\right)\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3\right\}\)