K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Q=x^6+x^5+x^5+x^4+x^4+x^3+x^3+x^2+x^2+x+x+1

=x^4(x^2+x)+x^3(x^2+x)+x^2(x^2+x)+x(x^2+x)+1+x+1

=x^4+x^3+x^2+x+x+2

=x^4+x^3+x^2+2x+2

=x^2(x^2+x)+x^2+x+x+2

=x^2+1+x+2

=x^2+x+3

=1+3

=4

4 tháng 2 2018

Ta có:

Q= \(x^2.\left(x^4+2x^3+x^2\right)+\left(x^4+2x^3+x^2\right)+x^2+x+x+1\)

\(=x^2.\left(x^2+x\right)^2+\left(x^2+x\right)^2+x+2\)

\(=x^2+x+3=4\)

Vậy Q=4

26 tháng 12 2016

Q=(x6+x5)+(x5+x4)+(x4+x3)+(x3+x2)+(x2+x)+(x+1)

=x4(x2+x)+x3(x2+x)+x2(x2+x)+x(x2+x)+(x2+x)+x+(x2+x)

=x4+x3+x2+x+2+x

=x2(x2+1)+(x2+x)+2+x

=x2+x+2+1

=(x2+1)+3

=4

26 tháng 12 2016

Kết quả Q=3

8 tháng 9 2021

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

2: Để \(2x\left(x+1\right)< 0\) thì \(\left\{{}\begin{matrix}x+1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow-1\le x\le0\)

20 tháng 8 2021

Bạn ơi nếu x  ≤ 0 mà x = 0 thì 2x (x+1) = 0 

mà 0 = 0 thì sia rồi đúng ko

 

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)