K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Q=(x6+x5)+(x5+x4)+(x4+x3)+(x3+x2)+(x2+x)+(x+1)

=x4(x2+x)+x3(x2+x)+x2(x2+x)+x(x2+x)+(x2+x)+x+(x2+x)

=x4+x3+x2+x+2+x

=x2(x2+1)+(x2+x)+2+x

=x2+x+2+1

=(x2+1)+3

=4

26 tháng 12 2016

Kết quả Q=3

14 tháng 10 2018

1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả

\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:

Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)

\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)

\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)

14 tháng 10 2018

Chết,nhầm =((( buồn ghê =((((sorry bạn nhé!

13 tháng 7 2018

Q = x^4(x^2+x) + x^3(x^2+x) + x^2(x^2+x) + x(x^2+x) + x^2 + x + x +1

= x^4 + x^3 + x^2 + 2x + 2

= x^2(x^2+x) + x + 3 

= x^2 + x + 3 = 4

11 tháng 12 2017

Ta có:  5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0

\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0

\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)

Thay x = 1; y = -1; x + y = 0 vào M ta được:

 M = 0 + (1 + 2)2008 + ( - 1 + 1)2009

     = 0 + 32008 + 0 = 32008

9 tháng 12 2019

Ta có:

\(\frac{x}{x^2+x+1}=-\frac{1}{4}\Rightarrow x^2+x+1=-4x\)

\(\Rightarrow x^2+5x+1=0\Rightarrow x^2=5x+1\)

Với x2=5x+1 ta được:

\(P=\frac{2x\left(5x+1\right)^2+10\left(5x+1\right)^2+2x\left(5x+1\right)-7\left(5x+1\right)-35x+2009}{2029+60x+11\left(5x+1\right)-5x\left(5x+1\right)-\left(5x+1\right)^2}\)

\(P=\frac{2x\left(25x^2+10x+1\right)+10\left(25x^2+10x+1\right)+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-\left(25x^2+10x+1\right)}\)

\(P=\frac{50x^3+20x^2+2x+250x^2+100x+10+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-25x^2-10x-1}\)

\(P=\frac{50x^3+280x^2+34x+2012}{2039+100x-50x^2}\)

\(P=\frac{50x\left(5x+1\right)+280\left(5x+1\right)+34x+2012}{2039+100x-50\left(5x+1\right)}\)

\(P=\frac{250x^2+50x+1400x+280+34x+2012}{2039+100x-250x-50}\)

\(P=\frac{250\left(5x+1\right)+50x+1400x+280+34x+2012}{1989-150x}\)

\(P=\frac{1250x+250+50x+1400x+280+34x+2012}{1989-150x}\)

9 tháng 12 2019

bài trên sai rồi

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

10 tháng 11 2018

Bài 1: 

\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)

\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)

\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)

\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)

\(Q=\left(2x^2+6x\right)^2-1\)

\(Q=99^2-1\)

\(Q=9800\)

Bài 2:

Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)

\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)

\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)

\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(A=2^{128}-1^2+1\)

\(A=2^{128}\left(đpcm\right)\)

10 tháng 11 2018

Bài 3:

Để C là số nguyên thì x2 - 3 ⋮ x - 2

<=> x (x - 2) + 2x - 3 ⋮ x - 2

mà x (x - 2) ⋮ x - 2

=> 2x - 3 ⋮ x - 2

<=> 2 (x - 2) + 3 ⋮ x - 2

mà 2 (x - 2) ⋮ x - 2

=> 3 ⋮ x - 2

=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Ta có bảng :

x-213-1-3
x351-1

Vậy x thuộc { -1; 1; 3; 5 }