K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ SO vuông góc (ABC)

=>SO là trung đoạn của hình chóp S.ABC và O là tâm của ΔABC

Gọi giao của AO với BC là E

=>AO vuông góc BC tại E

ΔABC đều có AE là đường cao và O là tâm

nên AO=2/3AE và \(AE=\dfrac{6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)

=>\(AO=2\sqrt{3}\left(cm\right)\)

ΔSAO vuông tại O

=>SO^2+OA^2=SA^2

=>\(SO^2+12=5^2\)

=>\(SO=\sqrt{13}\left(cm\right)\)

\(S_{XQ}=\dfrac{1}{2}\sqrt{13}\cdot6\cdot3=9\sqrt{13}\)

=>Không có câu nào đúng

Sxq=5*4*6,5/2=65cm2

V=5^2*6=150cm3

31 tháng 7 2023

Nữa chu vi đáy của hình chóp đều:

\(5\cdot4:2=10\left(cm\right)\)

Diện tích xung quanh của hình chóp đều là:

\(S_{xq}=10\cdot6,5=65\left(cm^2\right)\)

Diện tích đáy của hình chóp đều:

\(5^2=25\left(cm^2\right)\)

Thể tích của hình chóp đều:

\(V=\dfrac{1}{3}\cdot25\cdot6=50\left(cm^3\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

Xét tam giác $SAB$ có $SA=SB=10$, $AB=12$

Kẻ $SH\perp AB$ thì $H$ là trung điểm của $AB$.

$\Rightarrow AH=6$ (cm)

Theo định lý Pitago:

$SH=\sqrt{SA^2-AH^2}=\sqrt{10^2-6^2}=8$ (cm)

$S_{SAB}=\frac{SH.AB}{2}=\frac{8.12}{2}=48$ (cm vuông)

$S_{xq}=3S_{SAB}=3.48=144$ (cm vuông)

23 tháng 4 2021

khó thế

a: S.ABC là hình chóp đều

=>SA=SB=SC và AB=AC=BC

ΔSAB cân tại S có SM là trung tuyến

nên SM vuông góc AB

=>ΔSMA vuông tại M

\(MA=\sqrt{SA^2-SM^2}=2\left(cm\right)\)

=>BA=2*2=4cm=BC=AC

b: \(S_{Xq}=\dfrac{1}{2}\left(4+4+4\right)\cdot5=6\cdot5=30\left(cm^2\right)\)

c: \(S_{tp}=30+4^2\cdot\dfrac{\sqrt{3}}{4}=30+4\sqrt{3}\left(cm^2\right)\)

8 tháng 2 2017

Bài tập: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

25 tháng 1 2018

Chọn D

26 tháng 10 2017

Đáp án đúng : D