K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

=26163 nha bạn

DD
22 tháng 7 2021

d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)

\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)

\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)

\(\ge\left|6-2x+2x+5\right|=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).

e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)

\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)

Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).

f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)

\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)

\(=\left|2x-3\right|+\left|2x-7\right|\)

\(\ge\left|2x-3+7-2x\right|=4\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).

6 tháng 11 2018

\(\text{Xét công thức tổng quát }:x^4+\frac{1}{4}=\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}\right)-x^2\)

\(=\left(x^2+\frac{1}{2}\right)^2-x^2=\left(x^2-x+\frac{1}{2}\right)\left(x^2+x+\frac{1}{2}\right)\)

Áp dụng vào B ta đc:

\(B=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}\)

\(=\frac{\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)...\left(11^2-11+\frac{1}{2}\right)\left(11^2+11+\frac{1}{2}\right)}{\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)...\left(12^2-12+\frac{1}{2}\right)\left(12^2+12+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(122+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}\left(122+\frac{1}{2}\right)}{\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}=\frac{49}{16589}\)

ko biết có đúng ko!! hình như còn 1 cách là nhân 1 đa thức với 16 nữa thì phải lâu ko động đến bạn thử xem đc ko nhé

8 tháng 4 2019

bai2:

a.x=3/5 hoacx=3/5

8 tháng 4 2019

Bài 2 

a. \(-1\frac{2}{3}-|2x-1|:\frac{3}{5}=-2\)

\(|2x-1|:\frac{3}{5}=\frac{5}{3}-2\)

\(|2x-1|:\frac{3}{5}=-\frac{1}{3}\)

\(|2x-1|=-\frac{1}{5}\)

Vì giá trị tuyệt đối luôn \(\ge0\)với mọi x

mà \(-\frac{1}{5}< 0\)

=> \(x\in\varnothing\)

9 tháng 8 2016

ket qua bang 0

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

1.

$(\frac{5}{6})^{10}.(\frac{3}{10})^{10}=(\frac{5}{6}.\frac{3}{10})^{10}=(\frac{1}{4})^{10}$

$=\frac{1}{4^{10}}$

2.

$(\frac{4}{7})^{19}: (\frac{-12}{35})^{19}=(\frac{4}{7}: \frac{-12}{35})^{19}=(\frac{-5}{3})^{19}$

3.

$(\frac{-3}{7})^7:\frac{-3}{5}=\frac{(-3)^7}{7^7}.\frac{5}{-3}=\frac{5.(-3)^6}{7^7}=\frac{5.3^6}{7^7}$

27 tháng 9 2023

giúp mình với ạ

 

 

21 tháng 3 2022

`Answer:`

Ta thấy: 

\(9=1.9\)

\(20=10.2\)

\(33=11.3\)

...

\(9200=100.92\)

`=>` Mẫu thức của từng nhân tử có dạng là \(n\left(n+8\right)\)

Xét dạng tổng quát của nhân tử: \(1+\frac{7}{n\left(n+8\right)}=\frac{n^2+8n+7}{n\left(n+8\right)}=\frac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)

\(n=1\Rightarrow1+\frac{7}{1.9}=\frac{2.8}{1.9}\)

\(n=2\Rightarrow1+\frac{7}{2.10}=\frac{3.9}{2.10}\)

\(n=3\Rightarrow1=\frac{7}{3.10}=\frac{4.10}{3.11}\)

...

\(n=92\Rightarrow1+\frac{7}{92.100}=\frac{93.99}{92.100}\)

\(\Rightarrow\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}...\frac{93.99}{92.100}=\frac{\left(2.3.4...93\right)\left(8.9.10...9\right)}{\left(1.2.3...92\right)\left(9.10.11...100\right)}=\frac{93.8}{1.100}=\frac{186}{25}\)